367 二分查找深入理解

关注查找的区间问题
This commit is contained in:
whai 2023-12-06 08:18:12 +08:00
parent 01864dd56d
commit d19cd4f072

View File

@ -0,0 +1,109 @@
package cn.whaifree.leetCode.middle;
import org.junit.Test;
/**
* 34. 在排序数组中查找元素的第一个和最后一个位置
* 中等
* 给你一个按照非递减顺序排列的整数数组 nums和一个目标值 target请你找出给定目标值在数组中的开始位置和结束位置
*
* 如果数组中不存在目标值 target返回 [-1, -1]
*
* 你必须设计并实现时间复杂度为 O(log n) 的算法解决此问题
* 示例 1
*
* 输入nums = [5,7,7,8,8,10], target = 8
* 输出[3,4]
* 示例 2
*
* 输入nums = [5,7,7,8,8,10], target = 6
* 输出[-1,-1]
* 示例 3
*
* 输入nums = [], target = 0
* 输出[-1,-1]
*
*
* 提示
*
* 0 <= nums.length <= 105
* -109 <= nums[i] <= 109
* nums 是一个非递减数组
* -109 <= target <= 109
*/
public class LeetCode34 {
/**
* 非递减顺序排列的整数数组
* [0,length]
* [5,8,8,8,8,10]
* @param nums
* @param target
* @return
*/
public int[] searchRange(int[] nums, int target) {
int[] ans = new int[2];
// 三头
int left = 0;
int right = nums.length - 1;
while (left <= right) {
int middle = (left + right) / 2;
if (nums[middle] == target) {
// [leftmiddle) , (middle,right]区间里找到第一个和最后一个target
// break;
// 找到了一个
if (nums[left] == target && nums[right] == target) {
ans[0] = left;
ans[1] = right;
return ans;
} else if (nums[left] == target) {
right--;
} else if (nums[right] == target) {
left++;
} else {
right--;
left++;
}
} else if (nums[middle] < target) {
left = middle + 1;
} else {
right = middle - 1;
}
}
ans[0] = -1;
ans[1] = -1;
return ans;
}
public int[] searchRange2(int[] nums, int target) {
int leftIdx = binarySearch(nums, target, true);
int rightIdx = binarySearch(nums, target, false) - 1;
if (leftIdx <= rightIdx && rightIdx < nums.length && nums[leftIdx] == target && nums[rightIdx] == target) {
return new int[]{leftIdx, rightIdx};
}
return new int[]{-1, -1};
}
public int binarySearch(int[] nums, int target, boolean lower) {
int left = 0, right = nums.length - 1, ans = nums.length;
while (left <= right) {
int mid = (left + right) / 2;
if (nums[mid] > target || (lower && nums[mid] >= target)) {
right = mid - 1;
ans = mid;
} else {
left = mid + 1;
}
}
return ans;
}
@Test
public void test() {
for (int i : searchRange2(new int[]{5,8,8,8,8,10}, 8)) {
System.out.println(i);
}
}
}