调整Python环境和代码以支持新功能
- 修改Python版本为3.8.10,更新相关依赖 - 添加新的数据处理脚本dataprocessing_sar.py - 调整网络结构描述,增加注释 - 修改测试脚本以支持新功能 -调整训练脚本中的损失计算和学习率策略
This commit is contained in:
parent
82acfa83dc
commit
fe47313277
@ -2,7 +2,7 @@
|
||||
<module type="PYTHON_MODULE" version="4">
|
||||
<component name="NewModuleRootManager">
|
||||
<content url="file://$MODULE_DIR$" />
|
||||
<orderEntry type="jdk" jdkName="Remote Python 3.12.4 (sftp://star@192.168.50.108:22/home/star/anaconda3/bin/python)" jdkType="Python SDK" />
|
||||
<orderEntry type="jdk" jdkName="Remote Python 3.8.10 (sftp://star@192.168.50.108:22/home/star/anaconda3/envs/cddfuse/bin/python)" jdkType="Python SDK" />
|
||||
<orderEntry type="sourceFolder" forTests="false" />
|
||||
</component>
|
||||
</module>
|
@ -1,6 +1,6 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="PublishConfigData" autoUpload="Always" serverName="star@192.168.50.108:22 password (6)" remoteFilesAllowedToDisappearOnAutoupload="false">
|
||||
<component name="PublishConfigData" autoUpload="Always" serverName="star@192.168.50.108:22 password (7)" remoteFilesAllowedToDisappearOnAutoupload="false">
|
||||
<serverData>
|
||||
<paths name="star@192.168.50.108:22 password">
|
||||
<serverdata>
|
||||
@ -12,7 +12,7 @@
|
||||
<paths name="star@192.168.50.108:22 password (2)">
|
||||
<serverdata>
|
||||
<mappings>
|
||||
<mapping local="$PROJECT_DIR$" web="/" />
|
||||
<mapping deploy="/home/star/whaiDir/CDDFuse" local="$PROJECT_DIR$" web="" />
|
||||
</mappings>
|
||||
</serverdata>
|
||||
</paths>
|
||||
@ -44,6 +44,20 @@
|
||||
</mappings>
|
||||
</serverdata>
|
||||
</paths>
|
||||
<paths name="star@192.168.50.108:22 password (7)">
|
||||
<serverdata>
|
||||
<mappings>
|
||||
<mapping deploy="/home/star/whaiDir/CDDFuse" local="$PROJECT_DIR$" />
|
||||
</mappings>
|
||||
</serverdata>
|
||||
</paths>
|
||||
<paths name="star@192.168.50.108:22 password (8)">
|
||||
<serverdata>
|
||||
<mappings>
|
||||
<mapping local="$PROJECT_DIR$" web="/" />
|
||||
</mappings>
|
||||
</serverdata>
|
||||
</paths>
|
||||
<paths name="v100">
|
||||
<serverdata>
|
||||
<mappings>
|
||||
|
@ -1,5 +1,8 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="Black">
|
||||
<option name="sdkName" value="Remote Python 3.8.10 (sftp://star@192.168.50.108:22/home/star/anaconda3/envs/cddfuse/bin/python)" />
|
||||
</component>
|
||||
<component name="MavenImportPreferences">
|
||||
<option name="generalSettings">
|
||||
<MavenGeneralSettings>
|
||||
@ -9,5 +12,5 @@
|
||||
</MavenGeneralSettings>
|
||||
</option>
|
||||
</component>
|
||||
<component name="ProjectRootManager" version="2" project-jdk-name="Remote Python 3.12.4 (sftp://star@192.168.50.108:22/home/star/anaconda3/bin/python)" project-jdk-type="Python SDK" />
|
||||
<component name="ProjectRootManager" version="2" project-jdk-name="Remote Python 3.8.10 (sftp://star@192.168.50.108:22/home/star/anaconda3/envs/cddfuse/bin/python)" project-jdk-type="Python SDK" />
|
||||
</project>
|
0
data/MSRS_train_imgsize_128_stride_200.h5
Normal file
0
data/MSRS_train_imgsize_128_stride_200.h5
Normal file
@ -43,11 +43,11 @@ data_name="MSRS_train"
|
||||
img_size=128 #patch size
|
||||
stride=200 #patch stride
|
||||
|
||||
IR_files = sorted(get_img_file(r"MSRS_train/ir"))
|
||||
VIS_files = sorted(get_img_file(r"MSRS_train/vi"))
|
||||
IR_files = sorted(get_img_file(r"/media/star/8TB/whaiDownload/MSRS-main/train/ir"))
|
||||
VIS_files = sorted(get_img_file(r"/media/star/8TB/whaiDownload/MSRS-main/train/vi"))
|
||||
|
||||
assert len(IR_files) == len(VIS_files)
|
||||
h5f = h5py.File(os.path.join('.\\data',
|
||||
h5f = h5py.File(os.path.join('./data',
|
||||
data_name+'_imgsize_'+str(img_size)+"_stride_"+str(stride)+'.h5'),
|
||||
'w')
|
||||
h5_ir = h5f.create_group('ir_patchs')
|
||||
|
93
dataprocessing_sar.py
Normal file
93
dataprocessing_sar.py
Normal file
@ -0,0 +1,93 @@
|
||||
import os
|
||||
import h5py
|
||||
import numpy as np
|
||||
from tqdm import tqdm
|
||||
from skimage.io import imread
|
||||
|
||||
|
||||
def get_img_file(file_name):
|
||||
imagelist = []
|
||||
for parent, dirnames, filenames in os.walk(file_name):
|
||||
for filename in filenames:
|
||||
if filename.lower().endswith(('.bmp', '.dib', '.png', '.jpg', '.jpeg', '.pbm', '.pgm', '.ppm', '.tif', '.tiff', '.npy')):
|
||||
imagelist.append(os.path.join(parent, filename))
|
||||
return imagelist
|
||||
|
||||
def rgb2y(img):
|
||||
y = img[0:1, :, :] * 0.299000 + img[1:2, :, :] * 0.587000 + img[2:3, :, :] * 0.114000
|
||||
return y
|
||||
|
||||
def Im2Patch(img, win, stride=1):
|
||||
k = 0
|
||||
endc = img.shape[0]
|
||||
endw = img.shape[1]
|
||||
endh = img.shape[2]
|
||||
patch = img[:, 0:endw-win+0+1:stride, 0:endh-win+0+1:stride]
|
||||
TotalPatNum = patch.shape[1] * patch.shape[2]
|
||||
Y = np.zeros([endc, win*win,TotalPatNum], np.float32)
|
||||
for i in range(win):
|
||||
for j in range(win):
|
||||
patch = img[:,i:endw-win+i+1:stride,j:endh-win+j+1:stride]
|
||||
Y[:,k,:] = np.array(patch[:]).reshape(endc, TotalPatNum)
|
||||
k = k + 1
|
||||
return Y.reshape([endc, win, win, TotalPatNum])
|
||||
|
||||
def is_low_contrast(image, fraction_threshold=0.1, lower_percentile=10,
|
||||
upper_percentile=90):
|
||||
"""Determine if an image is low contrast."""
|
||||
limits = np.percentile(image, [lower_percentile, upper_percentile])
|
||||
ratio = (limits[1] - limits[0]) / limits[1]
|
||||
return ratio < fraction_threshold
|
||||
|
||||
data_name="MSRS_train"
|
||||
img_size=128 #patch size
|
||||
stride=200 #patch stride
|
||||
|
||||
IR_files = sorted(get_img_file(r"/media/star/8TB/whaiDownload/MSRS-main/train/ir"))
|
||||
VIS_files = sorted(get_img_file(r"/media/star/8TB/whaiDownload/MSRS-main/train/vi"))
|
||||
|
||||
assert len(IR_files) == len(VIS_files)
|
||||
h5f = h5py.File(os.path.join('./data',
|
||||
data_name+'_imgsize_'+str(img_size)+"_stride_"+str(stride)+'.h5'),
|
||||
'w')
|
||||
h5_ir = h5f.create_group('ir_patchs')
|
||||
h5_vis = h5f.create_group('vis_patchs')
|
||||
train_num=0
|
||||
for i in tqdm(range(len(IR_files))):
|
||||
I_VIS = imread(VIS_files[i]).astype(np.float32).transpose(2,0,1)/255. # [3, H, W] Uint8->float32
|
||||
I_VIS = rgb2y(I_VIS) # [1, H, W] Float32
|
||||
I_IR = imread(IR_files[i]).astype(np.float32)[None, :, :]/255. # [1, H, W] Float32
|
||||
|
||||
# crop
|
||||
I_IR_Patch_Group = Im2Patch(I_IR,img_size,stride)
|
||||
I_VIS_Patch_Group = Im2Patch(I_VIS, img_size, stride) # (3, 256, 256, 12)
|
||||
|
||||
for ii in range(I_IR_Patch_Group.shape[-1]):
|
||||
bad_IR = is_low_contrast(I_IR_Patch_Group[0,:,:,ii])
|
||||
bad_VIS = is_low_contrast(I_VIS_Patch_Group[0,:,:,ii])
|
||||
# Determine if the contrast is low
|
||||
if not (bad_IR or bad_VIS):
|
||||
avl_IR= I_IR_Patch_Group[0,:,:,ii] # available IR
|
||||
avl_VIS= I_VIS_Patch_Group[0,:,:,ii]
|
||||
avl_IR=avl_IR[None,...]
|
||||
avl_VIS=avl_VIS[None,...]
|
||||
|
||||
h5_ir.create_dataset(str(train_num), data=avl_IR,
|
||||
dtype=avl_IR.dtype, shape=avl_IR.shape)
|
||||
h5_vis.create_dataset(str(train_num), data=avl_VIS,
|
||||
dtype=avl_VIS.dtype, shape=avl_VIS.shape)
|
||||
train_num += 1
|
||||
|
||||
h5f.close()
|
||||
|
||||
with h5py.File(os.path.join('data',
|
||||
data_name+'_imgsize_'+str(img_size)+"_stride_"+str(stride)+'.h5'),"r") as f:
|
||||
for key in f.keys():
|
||||
print(f[key], key, f[key].name)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
18
net.py
18
net.py
@ -41,6 +41,14 @@ class DropPath(nn.Module):
|
||||
|
||||
|
||||
class AttentionBase(nn.Module):
|
||||
"""
|
||||
一个基础的多头注意力机制类。
|
||||
|
||||
参数:
|
||||
dim (int): 输入和输出的特征维度。
|
||||
num_heads (int, 可选): 注意力头的数量,默认为8。
|
||||
qkv_bias (bool, 可选): 是否为QKV投影层添加偏差,默认为False。
|
||||
"""
|
||||
def __init__(self,
|
||||
dim,
|
||||
num_heads=8,
|
||||
@ -54,6 +62,15 @@ class AttentionBase(nn.Module):
|
||||
self.proj = nn.Conv2d(dim, dim, kernel_size=1, bias=qkv_bias)
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
定义了输入数据x通过多头注意力机制的前向传播过程。
|
||||
|
||||
参数:
|
||||
x (Tensor): 输入的特征张量,形状为[batch_size, dim, height, width]。
|
||||
|
||||
返回:
|
||||
Tensor: 输出的特征张量,形状为[batch_size, dim, height, width]。
|
||||
"""
|
||||
# [batch_size, num_patches + 1, total_embed_dim]
|
||||
b, c, h, w = x.shape
|
||||
qkv = self.qkv2(self.qkv1(x))
|
||||
@ -79,6 +96,7 @@ class AttentionBase(nn.Module):
|
||||
out = self.proj(out)
|
||||
return out
|
||||
|
||||
|
||||
class Mlp(nn.Module):
|
||||
"""
|
||||
MLP as used in Vision Transformer, MLP-Mixer and related networks
|
||||
|
16
test_IVF.py
16
test_IVF.py
@ -1,3 +1,5 @@
|
||||
import cv2
|
||||
|
||||
from net import Restormer_Encoder, Restormer_Decoder, BaseFeatureExtraction, DetailFeatureExtraction
|
||||
import os
|
||||
import numpy as np
|
||||
@ -12,7 +14,7 @@ logging.basicConfig(level=logging.CRITICAL)
|
||||
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
||||
ckpt_path=r"models/CDDFuse_IVF.pth"
|
||||
for dataset_name in ["TNO","RoadScene"]:
|
||||
for dataset_name in ["TNO"]:
|
||||
print("\n"*2+"="*80)
|
||||
model_name="CDDFuse "
|
||||
print("The test result of "+dataset_name+' :')
|
||||
@ -36,9 +38,12 @@ for dataset_name in ["TNO","RoadScene"]:
|
||||
|
||||
with torch.no_grad():
|
||||
for img_name in os.listdir(os.path.join(test_folder,"ir")):
|
||||
print("Processing: "+img_name)
|
||||
|
||||
data_IR=image_read_cv2(os.path.join(test_folder,"ir",img_name),mode='GRAY')[np.newaxis,np.newaxis, ...]/255.0
|
||||
data_VIS = image_read_cv2(os.path.join(test_folder,"vi",img_name), mode='GRAY')[np.newaxis,np.newaxis, ...]/255.0
|
||||
data_VIS_BGR = cv2.imread(os.path.join(test_folder,"vi",img_name))
|
||||
_, data_VIS_Cr, data_VIS_Cb = cv2.split(cv2.cvtColor(data_VIS_BGR, cv2.COLOR_BGR2YCrCb))
|
||||
|
||||
data_IR,data_VIS = torch.FloatTensor(data_IR),torch.FloatTensor(data_VIS)
|
||||
data_VIS, data_IR = data_VIS.cuda(), data_IR.cuda()
|
||||
@ -49,8 +54,15 @@ for dataset_name in ["TNO","RoadScene"]:
|
||||
feature_F_D = DetailFuseLayer(feature_V_D + feature_I_D)
|
||||
data_Fuse, _ = Decoder(data_VIS, feature_F_B, feature_F_D)
|
||||
data_Fuse=(data_Fuse-torch.min(data_Fuse))/(torch.max(data_Fuse)-torch.min(data_Fuse))
|
||||
# fi = np.squeeze((data_Fuse * 255).cpu().numpy())
|
||||
# img_save(fi, img_name.split(sep='.')[0], test_out_folder)
|
||||
|
||||
fi = np.squeeze((data_Fuse * 255).cpu().numpy())
|
||||
img_save(fi, img_name.split(sep='.')[0], test_out_folder)
|
||||
fi = fi.astype(np.uint8)
|
||||
ycrcb_fi = np.dstack((fi, data_VIS_Cr, data_VIS_Cb))
|
||||
rgb_fi = cv2.cvtColor(ycrcb_fi, cv2.COLOR_YCrCb2RGB)
|
||||
img_save(rgb_fi, img_name.split(sep='.')[0], test_out_folder)
|
||||
print("save path : "+os.path.join(test_out_folder,img_name.split(sep='.')[0]+".png"))
|
||||
|
||||
|
||||
eval_folder=test_out_folder
|
||||
|
Loading…
Reference in New Issue
Block a user