fuse/utils/loss.py

54 lines
2.0 KiB
Python
Raw Normal View History

2023-05-04 17:34:24 +08:00
import torch
import torch.nn as nn
import torch.nn.functional as F
2023-06-17 07:46:05 +08:00
2023-05-04 17:34:24 +08:00
class Fusionloss(nn.Module):
def __init__(self):
super(Fusionloss, self).__init__()
self.sobelconv=Sobelxy()
def forward(self,image_vis,image_ir,generate_img):
image_y=image_vis[:,:1,:,:]
x_in_max=torch.max(image_y,image_ir)
loss_in=F.l1_loss(x_in_max,generate_img)
y_grad=self.sobelconv(image_y)
ir_grad=self.sobelconv(image_ir)
generate_img_grad=self.sobelconv(generate_img)
x_grad_joint=torch.max(y_grad,ir_grad)
loss_grad=F.l1_loss(x_grad_joint,generate_img_grad)
loss_total=loss_in+10*loss_grad
return loss_total,loss_in,loss_grad
class Sobelxy(nn.Module):
def __init__(self):
super(Sobelxy, self).__init__()
kernelx = [[-1, 0, 1],
[-2,0 , 2],
[-1, 0, 1]]
kernely = [[1, 2, 1],
[0,0 , 0],
[-1, -2, -1]]
kernelx = torch.FloatTensor(kernelx).unsqueeze(0).unsqueeze(0)
kernely = torch.FloatTensor(kernely).unsqueeze(0).unsqueeze(0)
self.weightx = nn.Parameter(data=kernelx, requires_grad=False).cuda()
self.weighty = nn.Parameter(data=kernely, requires_grad=False).cuda()
def forward(self,x):
sobelx=F.conv2d(x, self.weightx, padding=1)
sobely=F.conv2d(x, self.weighty, padding=1)
return torch.abs(sobelx)+torch.abs(sobely)
2023-06-17 07:46:05 +08:00
def cc(img1, img2):
eps = torch.finfo(torch.float32).eps
"""Correlation coefficient for (N, C, H, W) image; torch.float32 [0.,1.]."""
N, C, _, _ = img1.shape
img1 = img1.reshape(N, C, -1)
img2 = img2.reshape(N, C, -1)
img1 = img1 - img1.mean(dim=-1, keepdim=True)
img2 = img2 - img2.mean(dim=-1, keepdim=True)
cc = torch.sum(img1 * img2, dim=-1) / (eps + torch.sqrt(torch.sum(img1 **
2, dim=-1)) * torch.sqrt(torch.sum(img2**2, dim=-1)))
cc = torch.clamp(cc, -1., 1.)
return cc.mean()