2023-05-04 17:34:24 +08:00
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
import torch.nn.functional as F
|
|
|
|
|
2023-06-17 07:46:05 +08:00
|
|
|
|
2023-05-04 17:34:24 +08:00
|
|
|
|
|
|
|
class Fusionloss(nn.Module):
|
|
|
|
def __init__(self):
|
|
|
|
super(Fusionloss, self).__init__()
|
|
|
|
self.sobelconv=Sobelxy()
|
|
|
|
|
|
|
|
def forward(self,image_vis,image_ir,generate_img):
|
|
|
|
image_y=image_vis[:,:1,:,:]
|
|
|
|
x_in_max=torch.max(image_y,image_ir)
|
|
|
|
loss_in=F.l1_loss(x_in_max,generate_img)
|
|
|
|
y_grad=self.sobelconv(image_y)
|
|
|
|
ir_grad=self.sobelconv(image_ir)
|
|
|
|
generate_img_grad=self.sobelconv(generate_img)
|
|
|
|
x_grad_joint=torch.max(y_grad,ir_grad)
|
|
|
|
loss_grad=F.l1_loss(x_grad_joint,generate_img_grad)
|
|
|
|
loss_total=loss_in+10*loss_grad
|
|
|
|
return loss_total,loss_in,loss_grad
|
|
|
|
|
|
|
|
class Sobelxy(nn.Module):
|
|
|
|
def __init__(self):
|
|
|
|
super(Sobelxy, self).__init__()
|
|
|
|
kernelx = [[-1, 0, 1],
|
|
|
|
[-2,0 , 2],
|
|
|
|
[-1, 0, 1]]
|
|
|
|
kernely = [[1, 2, 1],
|
|
|
|
[0,0 , 0],
|
|
|
|
[-1, -2, -1]]
|
|
|
|
kernelx = torch.FloatTensor(kernelx).unsqueeze(0).unsqueeze(0)
|
|
|
|
kernely = torch.FloatTensor(kernely).unsqueeze(0).unsqueeze(0)
|
|
|
|
self.weightx = nn.Parameter(data=kernelx, requires_grad=False).cuda()
|
|
|
|
self.weighty = nn.Parameter(data=kernely, requires_grad=False).cuda()
|
|
|
|
def forward(self,x):
|
|
|
|
sobelx=F.conv2d(x, self.weightx, padding=1)
|
|
|
|
sobely=F.conv2d(x, self.weighty, padding=1)
|
|
|
|
return torch.abs(sobelx)+torch.abs(sobely)
|
2023-06-17 07:46:05 +08:00
|
|
|
|
|
|
|
|
|
|
|
def cc(img1, img2):
|
|
|
|
eps = torch.finfo(torch.float32).eps
|
|
|
|
"""Correlation coefficient for (N, C, H, W) image; torch.float32 [0.,1.]."""
|
|
|
|
N, C, _, _ = img1.shape
|
|
|
|
img1 = img1.reshape(N, C, -1)
|
|
|
|
img2 = img2.reshape(N, C, -1)
|
|
|
|
img1 = img1 - img1.mean(dim=-1, keepdim=True)
|
|
|
|
img2 = img2 - img2.mean(dim=-1, keepdim=True)
|
|
|
|
cc = torch.sum(img1 * img2, dim=-1) / (eps + torch.sqrt(torch.sum(img1 **
|
|
|
|
2, dim=-1)) * torch.sqrt(torch.sum(img2**2, dim=-1)))
|
|
|
|
cc = torch.clamp(cc, -1., 1.)
|
|
|
|
return cc.mean()
|