Update README.md

This commit is contained in:
Zhaozixiang1228 2023-06-17 00:45:29 +02:00
parent 007869dbc9
commit 7575ed66b1

View File

@ -36,13 +36,13 @@ Multi-modality (MM) image fusion aims to render fused images that maintain the m
Our CDDFuse is implemented in ``net.py``. Our CDDFuse is implemented in ``net.py``.
### Usage ### Testing
Pretrained models are available in ``'./models/CDDFuse_IVF.pth'`` and ``'./models/CDDFuse_MIF.pth'``, which are responsible for the Infrared-Visible Fusion (IVF) and Medical Image Fusion (MIF) tasks, respectively. Pretrained models are available in ``'./models/CDDFuse_IVF.pth'`` and ``'./models/CDDFuse_MIF.pth'``, which are responsible for the Infrared-Visible Fusion (IVF) and Medical Image Fusion (MIF) tasks, respectively.
The test datasets used in the paper have been stored in ``'./test_img/RoadScene'``, ``'./test_img/TNO'`` for IVF, ``'./test_img/MRI_CT'``, ``'./test_img/MRI_PET'`` and ``'./test_img/MRI_SPECT'`` for MIF. The test datasets used in the paper have been stored in ``'./test_img/RoadScene'``, ``'./test_img/TNO'`` for IVF, ``'./test_img/MRI_CT'``, ``'./test_img/MRI_PET'`` and ``'./test_img/MRI_SPECT'`` for MIF.
Unfortunately, since the size of **MSRS dataset** for IVF is 500+MB, we can not upload it for exhibition. The other datasets contain all the test images. Unfortunately, since the size of **MSRS dataset** for IVF is 500+MB, we can not upload it for exhibition. It can be downloaded via [this link](https://github.com/Linfeng-Tang/MSRS). The other datasets contain all the test images.
If you want to infer with our CDDFuse and obtain the fusion results in our paper, please run ``'test_IVF.py'`` for IVF and ``'test_MIF.py'`` for MIF. If you want to infer with our CDDFuse and obtain the fusion results in our paper, please run ``'test_IVF.py'`` for IVF and ``'test_MIF.py'`` for MIF.
@ -78,8 +78,8 @@ CDDFuse_MIF 4.88 79.17 38.14 2.61 1.41 0.61 0.68 1.34
================================================================================ ================================================================================
The test result of MRI_PET : The test result of MRI_PET :
EN SD SF MI SCD VIF Qabf SSIM EN SD SF MI SCD VIF Qabf SSIM
CDDFuse_IVF 4.23 81.68 28.04 1.87 1.82 0.66 0.65 1.46 CDDFuse_IVF 4.23 81.69 28.04 1.87 1.82 0.66 0.65 1.46
CDDFuse_MIF 4.22 70.73 29.57 2.03 1.69 0.71 0.71 1.49 CDDFuse_MIF 4.22 70.74 29.57 2.03 1.69 0.71 0.71 1.49
================================================================================ ================================================================================
================================================================================ ================================================================================
@ -89,9 +89,28 @@ CDDFuse_IVF 3.91 71.81 20.66 1.9 1.87 0.65 0.68 1.45
CDDFuse_MIF 3.9 58.31 20.87 2.49 1.35 0.97 0.78 1.48 CDDFuse_MIF 3.9 58.31 20.87 2.49 1.35 0.97 0.78 1.48
================================================================================ ================================================================================
``` ```
which can match the results in Table 5 in our original paper. which can match the results in Table 5 in our original paper.
### Training
**1. Virtual Environment**
```
# create virtual environment
conda create -n cddfuse python=3.8.10
conda activate cddfuse
# select pytorch version yourself
# install cddfuse requirements
pip install -r requirements.txt
```
**2. Data Preparation**
Download the MSRS dataset from [this link](https://github.com/Linfeng-Tang/MSRS) and place it in the folder ``'./MSRS_train``.
**3. Pre-Processing**
Run
```python dataprocessing.py``` and the processed training dataset is in ``'./data/MSRS_train_imgsize_128_stride_200.h5``.
**4. CDDFuse Training**
run ```python train.py``` and the trained model is available in ``'./models/'``.
## CDDFuse ## CDDFuse
### Illustration of our CDDFuse model. ### Illustration of our CDDFuse model.
@ -127,11 +146,16 @@ MM segmentation
## Related Work ## Related Work
- Zixiang Zhao, Shuang Xu, Chunxia Zhang, Junmin Liu, Jiangshe Zhang and Pengfei Li, *DIDFuse: Deep Image Decomposition for Infrared and Visible Image Fusion.* **IJCAI 2020**: 970-976, https://www.ijcai.org/Proceedings/2020/135. - Zixiang Zhao, Haowen Bai, Jiangshe Zhang, Yulun Zhang, Kai Zhang, Shuang Xu, Dongdong Chen, Radu Timofte, Luc Van Gool. *Equivariant Multi-Modality Image Fusion.* **arXiv:2305.11443**, https://arxiv.org/abs/2305.11443
- Zixiang Zhao, Shuang Xu, Jiangshe Zhang, Chengyang Liang, Chunxia Zhang and Junmin Liu, *Efficient and Model-Based Infrared and Visible Image Fusion via Algorithm Unrolling.* **IEEE Transactions on Circuits and Systems for Video Technology**, doi: 10.1109/TCSVT.2021.3075745, https://ieeexplore.ieee.org/document/9416456. - Zixiang Zhao, Haowen Bai, Yuanzhi Zhu, Jiangshe Zhang, Shuang Xu, Yulun Zhang, Kai Zhang, Deyu Meng, Radu Timofte, Luc Van Gool.
*DDFM: Denoising Diffusion Model for Multi-Modality Image Fusion.* **arXiv:2303.06840**, https://arxiv.org/abs/2303.06840
- Zixiang Zhao, Jiangshe Zhang, Haowen Bai, Yicheng Wang, Yukun Cui, Lilun Deng, Kai Sun, Chunxia Zhang, Junmin Liu, Shuang Xu, *Deep Convolutional Sparse Coding Networks for Interpretable Image Fusion.* **CVPR Workshop 2023**. https://robustart.github.io/long_paper/26.pdf. - Zixiang Zhao, Shuang Xu, Chunxia Zhang, Junmin Liu, Jiangshe Zhang and Pengfei Li. *DIDFuse: Deep Image Decomposition for Infrared and Visible Image Fusion.* **IJCAI 2020**, https://www.ijcai.org/Proceedings/2020/135.
- Zixiang Zhao, Shuang Xu, Chunxia Zhang, Junmin Liu, Jiangshe Zhang, *Bayesian fusion for infrared and visible images.* **Signal Processing**, Volume 177, 2020, 107734, ISSN 0165-1684, https://doi.org/10.1016/j.sigpro.2020.107734. - Zixiang Zhao, Shuang Xu, Jiangshe Zhang, Chengyang Liang, Chunxia Zhang and Junmin Liu. *Efficient and Model-Based Infrared and Visible Image Fusion via Algorithm Unrolling.* **IEEE Transactions on Circuits and Systems for Video Technology 2021**, https://ieeexplore.ieee.org/document/9416456.
- Zixiang Zhao, Jiangshe Zhang, Haowen Bai, Yicheng Wang, Yukun Cui, Lilun Deng, Kai Sun, Chunxia Zhang, Junmin Liu, Shuang Xu. *Deep Convolutional Sparse Coding Networks for Interpretable Image Fusion.* **CVPR Workshop 2023**. https://robustart.github.io/long_paper/26.pdf.
- Zixiang Zhao, Shuang Xu, Chunxia Zhang, Junmin Liu, Jiangshe Zhang. *Bayesian fusion for infrared and visible images.* **Signal Processing**, https://doi.org/10.1016/j.sigpro.2020.107734.