# CDDFuse
Codes for ***CDDFuse: Correlation-Driven Dual-Branch Feature Decomposition for Multi-Modality Image Fusion. (CVPR 2023)***
[Zixiang Zhao](https://zhaozixiang1228.github.io/), [Haowen Bai](), [Jiangshe Zhang](http://gr.xjtu.edu.cn/web/jszhang), [Yulun Zhang](https://yulunzhang.com/), [Shuang Xu](https://shuangxu96.github.io/), [Zudi Lin](https://zudi-lin.github.io/), [Radu Timofte](https://www.informatik.uni-wuerzburg.de/computervision/home/) and [Luc Van Gool](https://vision.ee.ethz.ch/people-details.OTAyMzM=.TGlzdC8zMjQ4LC0xOTcxNDY1MTc4.html).
-[*[Paper]*]()
-[*[ArXiv]*](https://arxiv.org/abs/2104.06977)
-[*[Supplementary Materials]*]()
## Update
- [2023/5] Training codes and config files will be public available before June.
- [2023/4] Release inference code for infrared-visible image fusion and medical image fusion.
## Citation
```
@article{CDDFuse,
author = {Zixiang Zhao and Haowen Bai and Jiangshe Zhang and Yulun Zhang and Shuang Xu and Zudi Lin and Radu Timofte and Luc Van Gool},
title = {CDDFuse: Correlation-Driven Dual-Branch Feature Decomposition for Multi-Modality Image Fusion},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {},
year = {2023},
pages = {}
}
```
## Abstract
Multi-modality (MM) image fusion aims to render fused images that maintain the merits of different modalities, e.g., functional highlight and detailed textures. To tackle the challenge in modeling cross-modality features and decomposing desirable modality-specific and modality-shared features, we propose a novel Correlation-Driven feature Decomposition Fusion (CDDFuse) network. Firstly, CDDFuse uses Restormer blocks to extract cross-modality shallow features. We then introduce a dual-branch Transformer-CNN feature extractor with Lite Transformer (LT) blocks leveraging long-range attention to handle low-frequency global features and Invertible Neural Networks (INN) blocks focusing on extracting high-frequency local information. A correlation-driven loss is further proposed to make the low-frequency features correlated while the high-frequency features uncorrelated based on the embedded information. Then, the LT-based global fusion and INN-based local fusion layers output the fused image. Extensive experiments demonstrate that our CDDFuse achieves promising results in multiple fusion tasks, including infrared-visible image fusion and medical image fusion. We also show that CDDFuse can boost the performance in downstream infrared-visible semantic segmentation and object detection in a unified benchmark.
## Usage
### Network Architecture
Our CDDFuse is implemented in ``net.py``.
### Usage
Pretrained models are available in ``'./models/CDDFuse_IVF.pth'`` and ``'./models/CDDFuse_MIF.pth'``, which are responsible for the Infrared-Visible Fusion (IVF) and Medical Image Fusion (MIF) tasks, respectively.
The test datasets used in the paper have been stored in ``'./test_img/RoadScene'``, ``'./test_img/TNO'`` for IVF, ``'./test_img/MRI_CT'``, ``'./test_img/MRI_PET'`` and ``'./test_img/MRI_SPECT'`` for MIF.
Unfortunately, since the size of **MSRS dataset** for IVF is 500+MB, we can not upload it for exhibition. The other datasets contain all the test images.
If you want to infer with our CDDFuse and obtain the fusion results in our paper, please run ``'test_IVF.py'`` for IVF and ``'test_MIF.py'`` for MIF.
The testing results will be printed in the terminal.
The output for ``'test_IVF.py'`` is:
```
================================================================================
The test result of TNO :
EN SD SF MI SCD VIF Qabf SSIM
CDDFuse 7.12 46.0 13.15 2.19 1.76 0.77 0.54 1.03
================================================================================
================================================================================
The test result of RoadScene :
EN SD SF MI SCD VIF Qabf SSIM
CDDFuse 7.44 54.67 16.36 2.3 1.81 0.69 0.52 0.98
================================================================================
```
which can match the results in Table 1 in our original paper.
The output for ``'test_IVF.py'`` is:
```
================================================================================
The test result of MRI_CT :
EN SD SF MI SCD VIF Qabf SSIM
CDDFuse_IVF 4.83 88.59 33.83 2.24 1.74 0.5 0.59 1.31
CDDFuse_MIF 4.88 79.17 38.14 2.61 1.41 0.61 0.68 1.34
================================================================================
================================================================================
The test result of MRI_PET :
EN SD SF MI SCD VIF Qabf SSIM
CDDFuse_IVF 4.23 81.68 28.04 1.87 1.82 0.66 0.65 1.46
CDDFuse_MIF 4.22 70.73 29.57 2.03 1.69 0.71 0.71 1.49
================================================================================
================================================================================
The test result of MRI_SPECT :
EN SD SF MI SCD VIF Qabf SSIM
CDDFuse_IVF 3.91 71.81 20.66 1.9 1.87 0.65 0.68 1.45
CDDFuse_MIF 3.9 58.31 20.87 2.49 1.35 0.97 0.78 1.48
================================================================================
```
which can match the results in Table 5 in our original paper.
## CDDFuse
### Illustration of our CDDFuse model.
### Qualitative fusion results.
### Quantitative fusion results.
Infrared-Visible Image Fusion
Medical Image Fusion
MM detection
MM segmentation
## Related Work
- Zixiang Zhao, Shuang Xu, Chunxia Zhang, Junmin Liu, Jiangshe Zhang and Pengfei Li, *DIDFuse: Deep Image Decomposition for Infrared and Visible Image Fusion.* **IJCAI 2020**: 970-976, https://www.ijcai.org/Proceedings/2020/135.
- Zixiang Zhao, Shuang Xu, Jiangshe Zhang, Chengyang Liang, Chunxia Zhang and Junmin Liu, *Efficient and Model-Based Infrared and Visible Image Fusion via Algorithm Unrolling.* **IEEE Transactions on Circuits and Systems for Video Technology**, doi: 10.1109/TCSVT.2021.3075745, https://ieeexplore.ieee.org/document/9416456.
- Zixiang Zhao, Jiangshe Zhang, Haowen Bai, Yicheng Wang, Yukun Cui, Lilun Deng, Kai Sun, Chunxia Zhang, Junmin Liu, Shuang Xu, *Deep Convolutional Sparse Coding Networks for Interpretable Image Fusion.* **CVPR Workshop 2023**. https://robustart.github.io/long_paper/26.pdf.
- Zixiang Zhao, Shuang Xu, Chunxia Zhang, Junmin Liu, Jiangshe Zhang, *Bayesian fusion for infrared and visible images.* **Signal Processing**, Volume 177, 2020, 107734, ISSN 0165-1684, https://doi.org/10.1016/j.sigpro.2020.107734.