pfcfuse/mamba_ssm/utils/generation.py

388 lines
15 KiB
Python
Raw Permalink Normal View History

# Copyright (c) 2023, Albert Gu, Tri Dao.
import gc
import time
from collections import namedtuple
from dataclasses import dataclass, field
from functools import partial
from typing import Callable, Optional, Sequence, Union
import torch
import torch.nn.functional as F
from einops import rearrange, repeat
from torch import Tensor
from torch.profiler import ProfilerActivity, profile, record_function
from transformers.generation import GreedySearchDecoderOnlyOutput, SampleDecoderOnlyOutput, TextStreamer
@dataclass
class InferenceParams:
"""Inference parameters that are passed to the main model in order
to efficienly calculate and store the context during inference."""
max_seqlen: int
max_batch_size: int
seqlen_offset: int = 0
batch_size_offset: int = 0
key_value_memory_dict: dict = field(default_factory=dict)
lengths_per_sample: Optional[Tensor] = None
def reset(self, max_seqlen, max_batch_size):
self.max_seqlen = max_seqlen
self.max_batch_size = max_batch_size
self.seqlen_offset = 0
if self.lengths_per_sample is not None:
self.lengths_per_sample.zero_()
def modify_logits_for_min_p_filtering(logits, min_p):
"""Set the logits for none min_p values to -inf. Done in-place."""
if min_p <= 0.0 or min_p >= 1.0:
return
indices_to_remove = logits < min_p
logits.masked_fill_(indices_to_remove, float("-Inf"))
# https://github.com/NVIDIA/Megatron-LM/blob/0bb597b42c53355a567aba2a1357cc34b9d99ddd/megatron/text_generation/sampling.py
# https://github.com/huggingface/transformers/blob/a44985b41cfa2de48a5e1de7f1f93b7483da25d1/src/transformers/generation/logits_process.py#L231
def modify_logits_for_top_k_filtering(logits, top_k):
"""Set the logits for none top-k values to -inf. Done in-place."""
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
logits.masked_fill_(indices_to_remove, float("-Inf"))
# https://github.com/NVIDIA/Megatron-LM/blob/0bb597b42c53355a567aba2a1357cc34b9d99ddd/megatron/text_generation/sampling.py
# https://github.com/huggingface/transformers/blob/a44985b41cfa2de48a5e1de7f1f93b7483da25d1/src/transformers/generation/logits_process.py#L170
def modify_logits_for_top_p_filtering(logits, top_p):
"""Set the logits for none top-p values to -inf. Done in-place."""
if top_p <= 0.0 or top_p >= 1.0:
return
# First sort and calculate cumulative sum of probabilities.
sorted_logits, sorted_indices = torch.sort(logits, descending=False)
cumulative_probs = sorted_logits.softmax(dim=-1).cumsum(dim=-1)
# Remove tokens with cumulative top_p above the threshold (token with 0 are kept)
sorted_indices_to_remove = cumulative_probs <= (1 - top_p)
# scatter sorted tensors to original indexing
indices_to_remove = sorted_indices_to_remove.scatter(
1, sorted_indices, sorted_indices_to_remove
)
logits.masked_fill_(indices_to_remove, float("-inf"))
def modify_logit_for_repetition_penalty(logits, prev_output_tokens, repetition_penalty=1.0):
"""Apply repetition penalty. See https://arxiv.org/abs/1909.05858
logits: (batch_size, vocab_size)
prev_output_tokens: (batch_size, seq_len)
"""
if repetition_penalty == 1.0:
return logits
score = torch.gather(logits, 1, prev_output_tokens)
# if score < 0 then repetition penalty has to be multiplied to reduce the previous token probability
score = torch.where(score < 0, score * repetition_penalty, score / repetition_penalty)
logits.scatter_(1, prev_output_tokens, score)
return logits
def sample(logits, top_k=1, top_p=0.0, min_p=0.0, temperature=1.0):
"""Sample from top-k logits.
Arguments:
logits: Tensor of shape (batch_size, vocab_size)
"""
if top_k == 1: # Short-circuit for greedy decoding
return logits.argmax(dim=-1)
else:
if top_p > 0.0:
assert top_p <= 1.0, "top-p should be in (0, 1]."
if top_k > 0:
top_k = min(top_k, logits.size(-1)) # Safety check
logits_top, indices = torch.topk(logits, top_k, dim=-1)
if temperature != 1.0:
logits_top /= temperature
modify_logits_for_top_p_filtering(logits_top, top_p)
return indices[
torch.arange(indices.shape[0], device=indices.device),
torch.multinomial(torch.softmax(logits_top, dim=-1), num_samples=1).squeeze(dim=-1),
]
else:
if min_p > 0.0:
logits_top = logits.clone()
max_prob = logits_top[..., 0].item()
min_prob = max_prob * min_p
modify_logits_for_min_p_filtering(logits_top, min_p)
if temperature != 1.0:
logits_top /= temperature
return torch.multinomial(torch.softmax(logits_top, dim=-1), num_samples=1).squeeze(dim=-1)
# Clone so that when we modify for top_p we don't change the original logits
logits_top = logits / temperature if temperature != 1.0 else logits.clone()
modify_logits_for_top_p_filtering(logits_top, top_p)
return torch.multinomial(torch.softmax(logits_top, dim=-1), num_samples=1).squeeze(
dim=-1
)
@torch.inference_mode()
def decode(
input_ids,
model,
max_length,
top_k=1,
top_p=0.0,
min_p=0.0,
temperature=1.0,
repetition_penalty=1.0,
eos_token_id=None,
teacher_outputs=None,
vocab_size=None,
cg=False,
enable_timing=False,
streamer: Optional[TextStreamer] = None
):
"""Decoding, either greedy or with top-k or top-p sampling.
If top-k = 0, don't limit the number of candidates (pure sampling).
Top-k and top-p can be used together. If top_k > 0 and top_p > 0, then top-k is applied first,
then top-p.
We assume that all sequences in the same batch have the same length.
Arguments:
input_ids: (batch, seq_len)
max_length: int
teacher_outputs (optional): (batch, seq_len). If provided, instead of sampling from the
logits, the next token is taken from the teacher_outputs. Useful for testing.
Returns: GreedySearchDecoderOnlyOutput or SampleDecoderOnlyOutput, with the following fields:
sequences: (batch, max_length)
scores: tuples of (batch, vocab_size)
"""
if streamer is not None:
streamer.put(input_ids.cpu())
batch_size, seqlen_og = input_ids.shape
teacher_output_len = teacher_outputs.shape[1] if teacher_outputs is not None else 0
if cg:
if not hasattr(model, "_decoding_cache"):
model._decoding_cache = None
model._decoding_cache = update_graph_cache(
model,
model._decoding_cache,
batch_size,
seqlen_og,
max_length,
)
inference_params = model._decoding_cache.inference_params
inference_params.reset(max_length, batch_size)
else:
inference_params = InferenceParams(max_seqlen=max_length, max_batch_size=batch_size)
def get_logits(input_ids, inference_params):
decoding = inference_params.seqlen_offset > 0
if decoding:
position_ids = torch.full(
(batch_size, 1),
inference_params.seqlen_offset,
dtype=torch.long,
device=input_ids.device,
)
else:
position_ids = None
if not cg or not decoding:
logits = model(
input_ids,
position_ids=position_ids,
inference_params=inference_params,
num_last_tokens=1,
).logits.squeeze(dim=1)
else:
logits = model._decoding_cache.run(
input_ids, position_ids, inference_params.seqlen_offset
).squeeze(dim=1)
return logits[..., :vocab_size] if vocab_size is not None else logits
def sample_tokens(logits, inference_params):
if teacher_outputs is None or teacher_output_len <= inference_params.seqlen_offset:
token = sample(logits, top_k=top_k, top_p=top_p, min_p=min_p, temperature=temperature)
else:
token = teacher_outputs[:, inference_params.seqlen_offset]
# return rearrange(token, "b -> b 1")
return token.unsqueeze(1)
def should_stop(current_token, inference_params):
if inference_params.seqlen_offset == 0:
return False
if eos_token_id is not None and (current_token == eos_token_id).all():
return True
if inference_params.seqlen_offset >= max_length - 1:
return True
return False
start = torch.cuda.Event(enable_timing=enable_timing)
end = torch.cuda.Event(enable_timing=enable_timing)
if enable_timing:
start.record()
scores, sequences = [], [input_ids]
sequences_cat = input_ids
while not should_stop(sequences[-1], inference_params):
scores.append(get_logits(sequences[-1], inference_params))
inference_params.seqlen_offset += sequences[-1].shape[1]
if repetition_penalty == 1.0:
sampled_tokens = sample_tokens(scores[-1], inference_params)
else:
logits = modify_logit_for_repetition_penalty(
scores[-1].clone(), sequences_cat, repetition_penalty
)
sampled_tokens = sample_tokens(logits, inference_params)
sequences_cat = torch.cat([sequences_cat, sampled_tokens], dim=1)
sequences.append(sampled_tokens)
if streamer is not None:
streamer.put(sampled_tokens.cpu())
if streamer is not None:
streamer.end()
if enable_timing:
end.record()
torch.cuda.synchronize()
print(f"Prompt processing + decoding time: {(start.elapsed_time(end)):.0f}ms")
output_cls = GreedySearchDecoderOnlyOutput if top_k == 1 else SampleDecoderOnlyOutput
return output_cls(sequences=torch.cat(sequences, dim=1), scores=tuple(scores))
class GenerationMixin:
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
raise NotImplementedError
def generate(
self,
input_ids,
max_length,
top_k=1,
top_p=0.0,
min_p=0.0,
temperature=1.0,
return_dict_in_generate=False,
output_scores=False,
**kwargs,
):
output = decode(
input_ids, self, max_length, top_k=top_k, top_p=top_p, min_p = min_p, temperature=temperature, **kwargs
)
if not output_scores:
output.scores = None
return output if return_dict_in_generate else output.sequences
@dataclass
class DecodingCGCache:
max_batch_size: int = 0
max_seqlen: int = 0
device = None
dtype = None
callables: dict = field(default_factory=dict)
mempool = None
inference_params: Optional[InferenceParams] = None
run: Optional[Callable] = None
@torch.inference_mode()
def update_graph_cache(
model,
cache,
batch_size,
seqlen_og,
max_seqlen,
decoding_seqlens=(1,),
dtype=None,
n_warmups=2,
):
if cache is None:
cache = DecodingCGCache()
param_example = next(iter(model.parameters()))
device = param_example.device
if dtype is None:
dtype = param_example.dtype
if (
(device, dtype) != (cache.device, cache.dtype)
or batch_size > cache.max_batch_size
or max_seqlen > cache.max_seqlen
): # Invalidate the cache
cache.callables = {}
cache.mempool = None
cache.inference_params = None
gc.collect()
cache.device, cache.dtype = device, dtype
cache.max_batch_size, cache.max_seqlen = batch_size, max_seqlen
assert hasattr(model, "allocate_inference_cache"), "CUDA graph decoding requires that the model has a method allocate_inference_cache"
inf_cache = model.allocate_inference_cache(batch_size, max_seqlen, dtype)
lengths_per_sample = torch.full((batch_size,), seqlen_og, dtype=torch.int32, device=device)
cache.inference_params = InferenceParams(
max_seqlen=max_seqlen,
max_batch_size=batch_size,
seqlen_offset=seqlen_og,
key_value_memory_dict=inf_cache,
lengths_per_sample=lengths_per_sample,
)
cache.mempool = torch.cuda.graphs.graph_pool_handle()
for decoding_seqlen in decoding_seqlens:
if (batch_size, decoding_seqlen) not in cache.callables:
cache.callables[batch_size, decoding_seqlen] = capture_graph(
model,
cache.inference_params,
batch_size,
max_seqlen,
decoding_seqlen=decoding_seqlen,
mempool=cache.mempool,
n_warmups=n_warmups,
)
def dispatch(input_ids, position_ids, seqlen):
batch_size, decoding_seqlen = input_ids.shape[:2]
return cache.callables[batch_size, decoding_seqlen](input_ids, position_ids, seqlen)
cache.run = dispatch
cache.inference_params.seqlen_offset = 0 # Reset so it's not confusing
return cache
def capture_graph(
model, inference_params, batch_size, max_seqlen, decoding_seqlen=1, mempool=None, n_warmups=2
):
device = next(iter(model.parameters())).device
input_ids = torch.full((batch_size, decoding_seqlen), 0, dtype=torch.long, device=device)
position_ids = torch.full((batch_size, decoding_seqlen), 0, dtype=torch.long, device=device)
seqlen_offset_og = inference_params.seqlen_offset
inference_params.seqlen_offset = max_seqlen - decoding_seqlen
inference_params.lengths_per_sample[:] = inference_params.seqlen_offset
# Warmup before capture
s = torch.cuda.Stream()
s.wait_stream(torch.cuda.current_stream())
with torch.cuda.stream(s):
for _ in range(n_warmups):
logits = model(
input_ids,
position_ids=position_ids,
inference_params=inference_params,
num_last_tokens=decoding_seqlen,
).logits
s.synchronize()
# This might be needed for correctness if we run with NCCL_GRAPH_MIXING_SUPPORT=0,
# which requires that graph launch and non-captured launch to not overlap (I think,
# that's how I interpret the documentation). I'm not sure if this is required.
if torch.distributed.is_initialized():
torch.distributed.barrier()
torch.cuda.current_stream().wait_stream(s)
# Captures the graph
# To allow capture, automatically sets a side stream as the current stream in the context
graph = torch.cuda.CUDAGraph()
with torch.cuda.graph(graph, pool=mempool):
logits = model(
input_ids,
position_ids=position_ids,
inference_params=inference_params,
num_last_tokens=decoding_seqlen,
).logits
def run(new_input_ids, new_position_ids, seqlen):
inference_params.lengths_per_sample[:] = seqlen
input_ids.copy_(new_input_ids)
position_ids.copy_(new_position_ids)
graph.replay()
return logits.clone()
inference_params.seqlen_offset = seqlen_offset_og
return run