pfcfuse/net.py

472 lines
17 KiB
Python
Raw Permalink Normal View History

2024-06-03 19:36:29 +08:00
import torch
import torch.nn as nn
import math
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from einops import rearrange
def drop_path(x, drop_prob: float = 0., training: bool = False):
if drop_prob == 0. or not training:
return x
keep_prob = 1 - drop_prob
# work with diff dim tensors, not just 2D ConvNets
shape = (x.shape[0],) + (1,) * (x.ndim - 1)
random_tensor = keep_prob + \
torch.rand(shape, dtype=x.dtype, device=x.device)
random_tensor.floor_() # binarize
output = x.div(keep_prob) * random_tensor
return output
class DropPath(nn.Module):
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
2024-06-03 19:36:29 +08:00
class Pooling(nn.Module):
def __init__(self, kernel_size=3):
super().__init__()
self.pool = nn.AvgPool2d(
kernel_size, stride=1, padding=kernel_size // 2)
def forward(self, x):
return self.pool(x) - x
class PoolMlp(nn.Module):
"""
Implementation of MLP with 1*1 convolutions.
Input: tensor with shape [B, C, H, W]
2024-06-03 19:36:29 +08:00
"""
def __init__(self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
bias=False,
drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Conv2d(in_features, hidden_features, 1, bias=bias)
self.act = act_layer()
self.fc2 = nn.Conv2d(hidden_features, out_features, 1, bias=bias)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x) # (B, C, H, W) --> (B, C, H, W)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x) # (B, C, H, W) --> (B, C, H, W)
x = self.drop(x)
return x
class BaseFeatureExtraction(nn.Module):
def __init__(self, dim, pool_size=3, mlp_ratio=4.,
act_layer=nn.GELU,
# norm_layer=nn.LayerNorm,
drop=0., drop_path=0.,
use_layer_scale=True, layer_scale_init_value=1e-5):
super().__init__()
self.norm1 = LayerNorm(dim, 'WithBias')
self.token_mixer = Pooling(kernel_size=pool_size) # vits是msaMLPs是mlp这个用pool来替代
self.norm2 = LayerNorm(dim, 'WithBias')
mlp_hidden_dim = int(dim * mlp_ratio)
self.poolmlp = PoolMlp(in_features=dim, hidden_features=mlp_hidden_dim,
act_layer=act_layer, drop=drop)
# The following two techniques are useful to train deep PoolFormers.
self.drop_path = DropPath(drop_path) if drop_path > 0. \
else nn.Identity()
self.use_layer_scale = use_layer_scale
if use_layer_scale:
self.layer_scale_1 = nn.Parameter(
torch.ones(dim, dtype=torch.float32) * layer_scale_init_value)
self.layer_scale_2 = nn.Parameter(
torch.ones(dim, dtype=torch.float32) * layer_scale_init_value)
def forward(self, x):
2024-06-03 19:36:29 +08:00
if self.use_layer_scale:
x = x + self.drop_path(
self.layer_scale_1.unsqueeze(-1).unsqueeze(-1)
* self.token_mixer(self.norm1(x)))
x = x + self.drop_path(
self.layer_scale_2.unsqueeze(-1).unsqueeze(-1)
* self.poolmlp(self.norm2(x)))
else:
x = x + self.drop_path(self.token_mixer(self.norm1(x)))
x = x + self.drop_path(self.poolmlp(self.norm2(x)))
return x
class BaseFeatureExtractionSAR(nn.Module):
def __init__(self, dim, pool_size=3, mlp_ratio=4.,
act_layer=nn.GELU,
# norm_layer=nn.LayerNorm,
drop=0., drop_path=0.,
use_layer_scale=True, layer_scale_init_value=1e-5):
super().__init__()
self.norm1 = LayerNorm(dim, 'WithBias')
self.token_mixer = Pooling(kernel_size=pool_size) # vits是msaMLPs是mlp这个用pool来替代
self.norm2 = LayerNorm(dim, 'WithBias')
mlp_hidden_dim = int(dim * mlp_ratio)
self.poolmlp = PoolMlp(in_features=dim, hidden_features=mlp_hidden_dim,
act_layer=act_layer, drop=drop)
# The following two techniques are useful to train deep PoolFormers.
self.drop_path = DropPath(drop_path) if drop_path > 0. \
else nn.Identity()
self.use_layer_scale = use_layer_scale
if use_layer_scale:
self.layer_scale_1 = nn.Parameter(
torch.ones(dim, dtype=torch.float32) * layer_scale_init_value)
self.layer_scale_2 = nn.Parameter(
torch.ones(dim, dtype=torch.float32) * layer_scale_init_value)
def forward(self, x):
if self.use_layer_scale:
x = x + self.drop_path(
self.layer_scale_1.unsqueeze(-1).unsqueeze(-1)
* self.token_mixer(self.norm1(x)))
x = x + self.drop_path(
self.layer_scale_2.unsqueeze(-1).unsqueeze(-1)
* self.poolmlp(self.norm2(x)))
else:
x = x + self.drop_path(self.token_mixer(self.norm1(x)))
x = x + self.drop_path(self.poolmlp(self.norm2(x)))
return x
2024-06-03 19:36:29 +08:00
class InvertedResidualBlock(nn.Module):
def __init__(self, inp, oup, expand_ratio):
super(InvertedResidualBlock, self).__init__()
hidden_dim = int(inp * expand_ratio)
self.bottleneckBlock = nn.Sequential(
# pw
nn.Conv2d(inp, hidden_dim, 1, bias=False),
# nn.BatchNorm2d(hidden_dim),
nn.ReLU6(inplace=True),
# dw
nn.ReflectionPad2d(1),
nn.Conv2d(hidden_dim, hidden_dim, 3, groups=hidden_dim, bias=False),
# nn.BatchNorm2d(hidden_dim),
nn.ReLU6(inplace=True),
# pw-linear
nn.Conv2d(hidden_dim, oup, 1, bias=False),
# nn.BatchNorm2d(oup),
)
def forward(self, x):
return self.bottleneckBlock(x)
2024-06-03 19:36:29 +08:00
class DetailNode(nn.Module):
def __init__(self):
2024-06-03 19:36:29 +08:00
super(DetailNode, self).__init__()
self.theta_phi = InvertedResidualBlock(inp=32, oup=32, expand_ratio=2)
self.theta_rho = InvertedResidualBlock(inp=32, oup=32, expand_ratio=2)
self.theta_eta = InvertedResidualBlock(inp=32, oup=32, expand_ratio=2)
2024-06-03 19:36:29 +08:00
self.shffleconv = nn.Conv2d(64, 64, kernel_size=1,
stride=1, padding=0, bias=True)
def separateFeature(self, x):
z1, z2 = x[:, :x.shape[1] // 2], x[:, x.shape[1] // 2:x.shape[1]]
return z1, z2
def forward(self, z1, z2):
z1, z2 = self.separateFeature(
self.shffleconv(torch.cat((z1, z2), dim=1)))
z2 = z2 + self.theta_phi(z1)
z1 = z1 * torch.exp(self.theta_rho(z2)) + self.theta_eta(z2)
return z1, z2
class DetailFeatureExtraction(nn.Module):
def __init__(self, num_layers=3):
super(DetailFeatureExtraction, self).__init__()
INNmodules = [DetailNode() for _ in range(num_layers)]
self.net = nn.Sequential(*INNmodules)
def forward(self, x):
z1, z2 = x[:, :x.shape[1] // 2], x[:, x.shape[1] // 2:x.shape[1]]
for layer in self.net:
z1, z2 = layer(z1, z2)
return torch.cat((z1, z2), dim=1)
class DetailFeatureExtractionSAR(nn.Module):
def __init__(self, num_layers=3):
super(DetailFeatureExtractionSAR, self).__init__()
INNmodules = [DetailNode() for _ in range(num_layers)]
self.net = nn.Sequential(*INNmodules)
def forward(self, x):
z1, z2 = x[:, :x.shape[1] // 2], x[:, x.shape[1] // 2:x.shape[1]]
for layer in self.net:
z1, z2 = layer(z1, z2)
return torch.cat((z1, z2), dim=1)
2024-06-03 19:36:29 +08:00
# =============================================================================
# =============================================================================
import numbers
##########################################################################
## Layer Norm
def to_3d(x):
return rearrange(x, 'b c h w -> b (h w) c')
def to_4d(x, h, w):
return rearrange(x, 'b (h w) c -> b c h w', h=h, w=w)
class BiasFree_LayerNorm(nn.Module):
def __init__(self, normalized_shape):
super(BiasFree_LayerNorm, self).__init__()
if isinstance(normalized_shape, numbers.Integral):
normalized_shape = (normalized_shape,)
normalized_shape = torch.Size(normalized_shape)
assert len(normalized_shape) == 1
self.weight = nn.Parameter(torch.ones(normalized_shape))
self.normalized_shape = normalized_shape
def forward(self, x):
sigma = x.var(-1, keepdim=True, unbiased=False)
return x / torch.sqrt(sigma + 1e-5) * self.weight
class WithBias_LayerNorm(nn.Module):
def __init__(self, normalized_shape):
super(WithBias_LayerNorm, self).__init__()
if isinstance(normalized_shape, numbers.Integral):
normalized_shape = (normalized_shape,)
normalized_shape = torch.Size(normalized_shape)
assert len(normalized_shape) == 1
self.weight = nn.Parameter(torch.ones(normalized_shape))
self.bias = nn.Parameter(torch.zeros(normalized_shape))
self.normalized_shape = normalized_shape
def forward(self, x):
mu = x.mean(-1, keepdim=True)
sigma = x.var(-1, keepdim=True, unbiased=False)
return (x - mu) / torch.sqrt(sigma + 1e-5) * self.weight + self.bias
class LayerNorm(nn.Module):
def __init__(self, dim, LayerNorm_type):
super(LayerNorm, self).__init__()
if LayerNorm_type == 'BiasFree':
self.body = BiasFree_LayerNorm(dim)
else:
self.body = WithBias_LayerNorm(dim)
def forward(self, x):
h, w = x.shape[-2:]
return to_4d(self.body(to_3d(x)), h, w)
##########################################################################
## Gated-Dconv Feed-Forward Network (GDFN)
class FeedForward(nn.Module):
def __init__(self, dim, ffn_expansion_factor, bias):
super(FeedForward, self).__init__()
hidden_features = int(dim * ffn_expansion_factor)
self.project_in = nn.Conv2d(
dim, hidden_features * 2, kernel_size=1, bias=bias)
self.dwconv = nn.Conv2d(hidden_features * 2, hidden_features * 2, kernel_size=3,
stride=1, padding=1, groups=hidden_features * 2, bias=bias)
self.project_out = nn.Conv2d(
hidden_features, dim, kernel_size=1, bias=bias)
def forward(self, x):
x = self.project_in(x)
x1, x2 = self.dwconv(x).chunk(2, dim=1)
x = F.gelu(x1) * x2
x = self.project_out(x)
return x
##########################################################################
## Multi-DConv Head Transposed Self-Attention (MDTA)
class Attention(nn.Module):
def __init__(self, dim, num_heads, bias):
super(Attention, self).__init__()
self.num_heads = num_heads
self.temperature = nn.Parameter(torch.ones(num_heads, 1, 1))
self.qkv = nn.Conv2d(dim, dim * 3, kernel_size=1, bias=bias)
self.qkv_dwconv = nn.Conv2d(
dim * 3, dim * 3, kernel_size=3, stride=1, padding=1, groups=dim * 3, bias=bias)
self.project_out = nn.Conv2d(dim, dim, kernel_size=1, bias=bias)
def forward(self, x):
b, c, h, w = x.shape
qkv = self.qkv_dwconv(self.qkv(x))
q, k, v = qkv.chunk(3, dim=1)
q = rearrange(q, 'b (head c) h w -> b head c (h w)',
head=self.num_heads)
k = rearrange(k, 'b (head c) h w -> b head c (h w)',
head=self.num_heads)
v = rearrange(v, 'b (head c) h w -> b head c (h w)',
head=self.num_heads)
q = torch.nn.functional.normalize(q, dim=-1)
k = torch.nn.functional.normalize(k, dim=-1)
attn = (q @ k.transpose(-2, -1)) * self.temperature
attn = attn.softmax(dim=-1)
out = (attn @ v)
out = rearrange(out, 'b head c (h w) -> b (head c) h w',
head=self.num_heads, h=h, w=w)
out = self.project_out(out)
return out
##########################################################################
class TransformerBlock(nn.Module):
def __init__(self, dim, num_heads, ffn_expansion_factor, bias, LayerNorm_type):
super(TransformerBlock, self).__init__()
self.norm1 = LayerNorm(dim, LayerNorm_type)
self.attn = Attention(dim, num_heads, bias)
self.norm2 = LayerNorm(dim, LayerNorm_type)
self.ffn = FeedForward(dim, ffn_expansion_factor, bias)
def forward(self, x):
x = x + self.attn(self.norm1(x))
x = x + self.ffn(self.norm2(x))
return x
##########################################################################
## Overlapped image patch embedding with 3x3 Conv
class OverlapPatchEmbed(nn.Module):
def __init__(self, in_c=3, embed_dim=48, bias=False):
super(OverlapPatchEmbed, self).__init__()
self.proj = nn.Conv2d(in_c, embed_dim, kernel_size=3,
stride=1, padding=1, bias=bias)
def forward(self, x):
x = self.proj(x)
return x
class Restormer_Encoder(nn.Module):
def __init__(self,
inp_channels=1,
out_channels=1,
dim=64,
num_blocks=[4, 4],
heads=[8, 8, 8],
ffn_expansion_factor=2,
bias=False,
LayerNorm_type='WithBias',
):
super(Restormer_Encoder, self).__init__()
self.patch_embed = OverlapPatchEmbed(inp_channels, dim)
2024-06-03 19:36:29 +08:00
self.encoder_level1 = nn.Sequential(
*[TransformerBlock(dim=dim, num_heads=heads[0], ffn_expansion_factor=ffn_expansion_factor,
bias=bias, LayerNorm_type=LayerNorm_type) for i in range(num_blocks[0])])
self.baseFeature = BaseFeatureExtraction(dim=dim)
self.detailFeature = DetailFeatureExtraction()
self.baseFeatureSar= BaseFeatureExtractionSAR(dim=dim)
self.detailFeatureSar = DetailFeatureExtractionSAR()
def forward(self, inp_img, sar_img=False):
2024-06-03 19:36:29 +08:00
inp_enc_level1 = self.patch_embed(inp_img)
out_enc_level1 = self.encoder_level1(inp_enc_level1)
if sar_img:
base_feature = self.baseFeature(out_enc_level1)
detail_feature = self.detailFeature(out_enc_level1)
else:
base_feature= self.baseFeature(out_enc_level1)
detail_feature = self.detailFeature(out_enc_level1)
return base_feature, detail_feature, out_enc_level1
2024-06-03 19:36:29 +08:00
class Restormer_Decoder(nn.Module):
def __init__(self,
inp_channels=1,
out_channels=1,
dim=64,
num_blocks=[4, 4],
heads=[8, 8, 8],
ffn_expansion_factor=2,
bias=False,
LayerNorm_type='WithBias',
):
super(Restormer_Decoder, self).__init__()
self.reduce_channel = nn.Conv2d(int(dim * 2), int(dim), kernel_size=1, bias=bias)
self.encoder_level2 = nn.Sequential(
*[TransformerBlock(dim=dim, num_heads=heads[1], ffn_expansion_factor=ffn_expansion_factor,
2024-06-03 19:36:29 +08:00
bias=bias, LayerNorm_type=LayerNorm_type) for i in range(num_blocks[1])])
self.output = nn.Sequential(
nn.Conv2d(int(dim), int(dim) // 2, kernel_size=3,
stride=1, padding=1, bias=bias),
nn.LeakyReLU(),
nn.Conv2d(int(dim) // 2, out_channels, kernel_size=3,
stride=1, padding=1, bias=bias), )
self.sigmoid = nn.Sigmoid()
def forward(self, inp_img, base_feature, detail_feature):
out_enc_level0 = torch.cat((base_feature, detail_feature), dim=1)
out_enc_level0 = self.reduce_channel(out_enc_level0)
out_enc_level1 = self.encoder_level2(out_enc_level0)
if inp_img is not None:
out_enc_level1 = self.output(out_enc_level1) + inp_img
else:
out_enc_level1 = self.output(out_enc_level1)
return self.sigmoid(out_enc_level1), out_enc_level0
if __name__ == '__main__':
height = 128
width = 128
window_size = 8
modelE = Restormer_Encoder().cuda()
modelD = Restormer_Decoder().cuda()