388 lines
15 KiB
Python
388 lines
15 KiB
Python
|
# Copyright (c) 2023, Albert Gu, Tri Dao.
|
||
|
import gc
|
||
|
import time
|
||
|
from collections import namedtuple
|
||
|
from dataclasses import dataclass, field
|
||
|
from functools import partial
|
||
|
from typing import Callable, Optional, Sequence, Union
|
||
|
|
||
|
import torch
|
||
|
import torch.nn.functional as F
|
||
|
from einops import rearrange, repeat
|
||
|
from torch import Tensor
|
||
|
from torch.profiler import ProfilerActivity, profile, record_function
|
||
|
from transformers.generation import GreedySearchDecoderOnlyOutput, SampleDecoderOnlyOutput, TextStreamer
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class InferenceParams:
|
||
|
"""Inference parameters that are passed to the main model in order
|
||
|
to efficienly calculate and store the context during inference."""
|
||
|
|
||
|
max_seqlen: int
|
||
|
max_batch_size: int
|
||
|
seqlen_offset: int = 0
|
||
|
batch_size_offset: int = 0
|
||
|
key_value_memory_dict: dict = field(default_factory=dict)
|
||
|
lengths_per_sample: Optional[Tensor] = None
|
||
|
|
||
|
def reset(self, max_seqlen, max_batch_size):
|
||
|
self.max_seqlen = max_seqlen
|
||
|
self.max_batch_size = max_batch_size
|
||
|
self.seqlen_offset = 0
|
||
|
if self.lengths_per_sample is not None:
|
||
|
self.lengths_per_sample.zero_()
|
||
|
|
||
|
|
||
|
def modify_logits_for_min_p_filtering(logits, min_p):
|
||
|
"""Set the logits for none min_p values to -inf. Done in-place."""
|
||
|
if min_p <= 0.0 or min_p >= 1.0:
|
||
|
return
|
||
|
indices_to_remove = logits < min_p
|
||
|
logits.masked_fill_(indices_to_remove, float("-Inf"))
|
||
|
# https://github.com/NVIDIA/Megatron-LM/blob/0bb597b42c53355a567aba2a1357cc34b9d99ddd/megatron/text_generation/sampling.py
|
||
|
# https://github.com/huggingface/transformers/blob/a44985b41cfa2de48a5e1de7f1f93b7483da25d1/src/transformers/generation/logits_process.py#L231
|
||
|
def modify_logits_for_top_k_filtering(logits, top_k):
|
||
|
"""Set the logits for none top-k values to -inf. Done in-place."""
|
||
|
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
|
||
|
logits.masked_fill_(indices_to_remove, float("-Inf"))
|
||
|
|
||
|
|
||
|
# https://github.com/NVIDIA/Megatron-LM/blob/0bb597b42c53355a567aba2a1357cc34b9d99ddd/megatron/text_generation/sampling.py
|
||
|
# https://github.com/huggingface/transformers/blob/a44985b41cfa2de48a5e1de7f1f93b7483da25d1/src/transformers/generation/logits_process.py#L170
|
||
|
def modify_logits_for_top_p_filtering(logits, top_p):
|
||
|
"""Set the logits for none top-p values to -inf. Done in-place."""
|
||
|
if top_p <= 0.0 or top_p >= 1.0:
|
||
|
return
|
||
|
# First sort and calculate cumulative sum of probabilities.
|
||
|
sorted_logits, sorted_indices = torch.sort(logits, descending=False)
|
||
|
cumulative_probs = sorted_logits.softmax(dim=-1).cumsum(dim=-1)
|
||
|
# Remove tokens with cumulative top_p above the threshold (token with 0 are kept)
|
||
|
sorted_indices_to_remove = cumulative_probs <= (1 - top_p)
|
||
|
# scatter sorted tensors to original indexing
|
||
|
indices_to_remove = sorted_indices_to_remove.scatter(
|
||
|
1, sorted_indices, sorted_indices_to_remove
|
||
|
)
|
||
|
logits.masked_fill_(indices_to_remove, float("-inf"))
|
||
|
|
||
|
|
||
|
def modify_logit_for_repetition_penalty(logits, prev_output_tokens, repetition_penalty=1.0):
|
||
|
"""Apply repetition penalty. See https://arxiv.org/abs/1909.05858
|
||
|
logits: (batch_size, vocab_size)
|
||
|
prev_output_tokens: (batch_size, seq_len)
|
||
|
"""
|
||
|
if repetition_penalty == 1.0:
|
||
|
return logits
|
||
|
score = torch.gather(logits, 1, prev_output_tokens)
|
||
|
# if score < 0 then repetition penalty has to be multiplied to reduce the previous token probability
|
||
|
score = torch.where(score < 0, score * repetition_penalty, score / repetition_penalty)
|
||
|
logits.scatter_(1, prev_output_tokens, score)
|
||
|
return logits
|
||
|
|
||
|
|
||
|
def sample(logits, top_k=1, top_p=0.0, min_p=0.0, temperature=1.0):
|
||
|
"""Sample from top-k logits.
|
||
|
Arguments:
|
||
|
logits: Tensor of shape (batch_size, vocab_size)
|
||
|
"""
|
||
|
if top_k == 1: # Short-circuit for greedy decoding
|
||
|
return logits.argmax(dim=-1)
|
||
|
else:
|
||
|
if top_p > 0.0:
|
||
|
assert top_p <= 1.0, "top-p should be in (0, 1]."
|
||
|
if top_k > 0:
|
||
|
top_k = min(top_k, logits.size(-1)) # Safety check
|
||
|
logits_top, indices = torch.topk(logits, top_k, dim=-1)
|
||
|
if temperature != 1.0:
|
||
|
logits_top /= temperature
|
||
|
modify_logits_for_top_p_filtering(logits_top, top_p)
|
||
|
return indices[
|
||
|
torch.arange(indices.shape[0], device=indices.device),
|
||
|
torch.multinomial(torch.softmax(logits_top, dim=-1), num_samples=1).squeeze(dim=-1),
|
||
|
]
|
||
|
else:
|
||
|
if min_p > 0.0:
|
||
|
logits_top = logits.clone()
|
||
|
max_prob = logits_top[..., 0].item()
|
||
|
min_prob = max_prob * min_p
|
||
|
modify_logits_for_min_p_filtering(logits_top, min_p)
|
||
|
if temperature != 1.0:
|
||
|
logits_top /= temperature
|
||
|
return torch.multinomial(torch.softmax(logits_top, dim=-1), num_samples=1).squeeze(dim=-1)
|
||
|
# Clone so that when we modify for top_p we don't change the original logits
|
||
|
logits_top = logits / temperature if temperature != 1.0 else logits.clone()
|
||
|
modify_logits_for_top_p_filtering(logits_top, top_p)
|
||
|
return torch.multinomial(torch.softmax(logits_top, dim=-1), num_samples=1).squeeze(
|
||
|
dim=-1
|
||
|
)
|
||
|
|
||
|
|
||
|
@torch.inference_mode()
|
||
|
def decode(
|
||
|
input_ids,
|
||
|
model,
|
||
|
max_length,
|
||
|
top_k=1,
|
||
|
top_p=0.0,
|
||
|
min_p=0.0,
|
||
|
temperature=1.0,
|
||
|
repetition_penalty=1.0,
|
||
|
eos_token_id=None,
|
||
|
teacher_outputs=None,
|
||
|
vocab_size=None,
|
||
|
cg=False,
|
||
|
enable_timing=False,
|
||
|
streamer: Optional[TextStreamer] = None
|
||
|
):
|
||
|
"""Decoding, either greedy or with top-k or top-p sampling.
|
||
|
If top-k = 0, don't limit the number of candidates (pure sampling).
|
||
|
Top-k and top-p can be used together. If top_k > 0 and top_p > 0, then top-k is applied first,
|
||
|
then top-p.
|
||
|
We assume that all sequences in the same batch have the same length.
|
||
|
|
||
|
Arguments:
|
||
|
input_ids: (batch, seq_len)
|
||
|
max_length: int
|
||
|
teacher_outputs (optional): (batch, seq_len). If provided, instead of sampling from the
|
||
|
logits, the next token is taken from the teacher_outputs. Useful for testing.
|
||
|
Returns: GreedySearchDecoderOnlyOutput or SampleDecoderOnlyOutput, with the following fields:
|
||
|
sequences: (batch, max_length)
|
||
|
scores: tuples of (batch, vocab_size)
|
||
|
"""
|
||
|
if streamer is not None:
|
||
|
streamer.put(input_ids.cpu())
|
||
|
|
||
|
batch_size, seqlen_og = input_ids.shape
|
||
|
teacher_output_len = teacher_outputs.shape[1] if teacher_outputs is not None else 0
|
||
|
if cg:
|
||
|
if not hasattr(model, "_decoding_cache"):
|
||
|
model._decoding_cache = None
|
||
|
model._decoding_cache = update_graph_cache(
|
||
|
model,
|
||
|
model._decoding_cache,
|
||
|
batch_size,
|
||
|
seqlen_og,
|
||
|
max_length,
|
||
|
)
|
||
|
inference_params = model._decoding_cache.inference_params
|
||
|
inference_params.reset(max_length, batch_size)
|
||
|
else:
|
||
|
inference_params = InferenceParams(max_seqlen=max_length, max_batch_size=batch_size)
|
||
|
|
||
|
def get_logits(input_ids, inference_params):
|
||
|
decoding = inference_params.seqlen_offset > 0
|
||
|
if decoding:
|
||
|
position_ids = torch.full(
|
||
|
(batch_size, 1),
|
||
|
inference_params.seqlen_offset,
|
||
|
dtype=torch.long,
|
||
|
device=input_ids.device,
|
||
|
)
|
||
|
else:
|
||
|
position_ids = None
|
||
|
if not cg or not decoding:
|
||
|
logits = model(
|
||
|
input_ids,
|
||
|
position_ids=position_ids,
|
||
|
inference_params=inference_params,
|
||
|
num_last_tokens=1,
|
||
|
).logits.squeeze(dim=1)
|
||
|
else:
|
||
|
logits = model._decoding_cache.run(
|
||
|
input_ids, position_ids, inference_params.seqlen_offset
|
||
|
).squeeze(dim=1)
|
||
|
return logits[..., :vocab_size] if vocab_size is not None else logits
|
||
|
|
||
|
def sample_tokens(logits, inference_params):
|
||
|
if teacher_outputs is None or teacher_output_len <= inference_params.seqlen_offset:
|
||
|
token = sample(logits, top_k=top_k, top_p=top_p, min_p=min_p, temperature=temperature)
|
||
|
else:
|
||
|
token = teacher_outputs[:, inference_params.seqlen_offset]
|
||
|
# return rearrange(token, "b -> b 1")
|
||
|
return token.unsqueeze(1)
|
||
|
|
||
|
def should_stop(current_token, inference_params):
|
||
|
if inference_params.seqlen_offset == 0:
|
||
|
return False
|
||
|
if eos_token_id is not None and (current_token == eos_token_id).all():
|
||
|
return True
|
||
|
if inference_params.seqlen_offset >= max_length - 1:
|
||
|
return True
|
||
|
return False
|
||
|
|
||
|
start = torch.cuda.Event(enable_timing=enable_timing)
|
||
|
end = torch.cuda.Event(enable_timing=enable_timing)
|
||
|
|
||
|
if enable_timing:
|
||
|
start.record()
|
||
|
scores, sequences = [], [input_ids]
|
||
|
sequences_cat = input_ids
|
||
|
while not should_stop(sequences[-1], inference_params):
|
||
|
scores.append(get_logits(sequences[-1], inference_params))
|
||
|
inference_params.seqlen_offset += sequences[-1].shape[1]
|
||
|
if repetition_penalty == 1.0:
|
||
|
sampled_tokens = sample_tokens(scores[-1], inference_params)
|
||
|
else:
|
||
|
logits = modify_logit_for_repetition_penalty(
|
||
|
scores[-1].clone(), sequences_cat, repetition_penalty
|
||
|
)
|
||
|
sampled_tokens = sample_tokens(logits, inference_params)
|
||
|
sequences_cat = torch.cat([sequences_cat, sampled_tokens], dim=1)
|
||
|
sequences.append(sampled_tokens)
|
||
|
if streamer is not None:
|
||
|
streamer.put(sampled_tokens.cpu())
|
||
|
if streamer is not None:
|
||
|
streamer.end()
|
||
|
if enable_timing:
|
||
|
end.record()
|
||
|
torch.cuda.synchronize()
|
||
|
print(f"Prompt processing + decoding time: {(start.elapsed_time(end)):.0f}ms")
|
||
|
output_cls = GreedySearchDecoderOnlyOutput if top_k == 1 else SampleDecoderOnlyOutput
|
||
|
return output_cls(sequences=torch.cat(sequences, dim=1), scores=tuple(scores))
|
||
|
|
||
|
|
||
|
class GenerationMixin:
|
||
|
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
|
||
|
raise NotImplementedError
|
||
|
|
||
|
def generate(
|
||
|
self,
|
||
|
input_ids,
|
||
|
max_length,
|
||
|
top_k=1,
|
||
|
top_p=0.0,
|
||
|
min_p=0.0,
|
||
|
temperature=1.0,
|
||
|
return_dict_in_generate=False,
|
||
|
output_scores=False,
|
||
|
**kwargs,
|
||
|
):
|
||
|
output = decode(
|
||
|
input_ids, self, max_length, top_k=top_k, top_p=top_p, min_p = min_p, temperature=temperature, **kwargs
|
||
|
)
|
||
|
if not output_scores:
|
||
|
output.scores = None
|
||
|
return output if return_dict_in_generate else output.sequences
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class DecodingCGCache:
|
||
|
max_batch_size: int = 0
|
||
|
max_seqlen: int = 0
|
||
|
device = None
|
||
|
dtype = None
|
||
|
callables: dict = field(default_factory=dict)
|
||
|
mempool = None
|
||
|
inference_params: Optional[InferenceParams] = None
|
||
|
run: Optional[Callable] = None
|
||
|
|
||
|
|
||
|
@torch.inference_mode()
|
||
|
def update_graph_cache(
|
||
|
model,
|
||
|
cache,
|
||
|
batch_size,
|
||
|
seqlen_og,
|
||
|
max_seqlen,
|
||
|
decoding_seqlens=(1,),
|
||
|
dtype=None,
|
||
|
n_warmups=2,
|
||
|
):
|
||
|
if cache is None:
|
||
|
cache = DecodingCGCache()
|
||
|
param_example = next(iter(model.parameters()))
|
||
|
device = param_example.device
|
||
|
if dtype is None:
|
||
|
dtype = param_example.dtype
|
||
|
if (
|
||
|
(device, dtype) != (cache.device, cache.dtype)
|
||
|
or batch_size > cache.max_batch_size
|
||
|
or max_seqlen > cache.max_seqlen
|
||
|
): # Invalidate the cache
|
||
|
cache.callables = {}
|
||
|
cache.mempool = None
|
||
|
cache.inference_params = None
|
||
|
gc.collect()
|
||
|
cache.device, cache.dtype = device, dtype
|
||
|
cache.max_batch_size, cache.max_seqlen = batch_size, max_seqlen
|
||
|
assert hasattr(model, "allocate_inference_cache"), "CUDA graph decoding requires that the model has a method allocate_inference_cache"
|
||
|
inf_cache = model.allocate_inference_cache(batch_size, max_seqlen, dtype)
|
||
|
lengths_per_sample = torch.full((batch_size,), seqlen_og, dtype=torch.int32, device=device)
|
||
|
cache.inference_params = InferenceParams(
|
||
|
max_seqlen=max_seqlen,
|
||
|
max_batch_size=batch_size,
|
||
|
seqlen_offset=seqlen_og,
|
||
|
key_value_memory_dict=inf_cache,
|
||
|
lengths_per_sample=lengths_per_sample,
|
||
|
)
|
||
|
cache.mempool = torch.cuda.graphs.graph_pool_handle()
|
||
|
for decoding_seqlen in decoding_seqlens:
|
||
|
if (batch_size, decoding_seqlen) not in cache.callables:
|
||
|
cache.callables[batch_size, decoding_seqlen] = capture_graph(
|
||
|
model,
|
||
|
cache.inference_params,
|
||
|
batch_size,
|
||
|
max_seqlen,
|
||
|
decoding_seqlen=decoding_seqlen,
|
||
|
mempool=cache.mempool,
|
||
|
n_warmups=n_warmups,
|
||
|
)
|
||
|
|
||
|
def dispatch(input_ids, position_ids, seqlen):
|
||
|
batch_size, decoding_seqlen = input_ids.shape[:2]
|
||
|
return cache.callables[batch_size, decoding_seqlen](input_ids, position_ids, seqlen)
|
||
|
|
||
|
cache.run = dispatch
|
||
|
cache.inference_params.seqlen_offset = 0 # Reset so it's not confusing
|
||
|
return cache
|
||
|
|
||
|
|
||
|
def capture_graph(
|
||
|
model, inference_params, batch_size, max_seqlen, decoding_seqlen=1, mempool=None, n_warmups=2
|
||
|
):
|
||
|
device = next(iter(model.parameters())).device
|
||
|
input_ids = torch.full((batch_size, decoding_seqlen), 0, dtype=torch.long, device=device)
|
||
|
position_ids = torch.full((batch_size, decoding_seqlen), 0, dtype=torch.long, device=device)
|
||
|
seqlen_offset_og = inference_params.seqlen_offset
|
||
|
inference_params.seqlen_offset = max_seqlen - decoding_seqlen
|
||
|
inference_params.lengths_per_sample[:] = inference_params.seqlen_offset
|
||
|
|
||
|
# Warmup before capture
|
||
|
s = torch.cuda.Stream()
|
||
|
s.wait_stream(torch.cuda.current_stream())
|
||
|
with torch.cuda.stream(s):
|
||
|
for _ in range(n_warmups):
|
||
|
logits = model(
|
||
|
input_ids,
|
||
|
position_ids=position_ids,
|
||
|
inference_params=inference_params,
|
||
|
num_last_tokens=decoding_seqlen,
|
||
|
).logits
|
||
|
s.synchronize()
|
||
|
# This might be needed for correctness if we run with NCCL_GRAPH_MIXING_SUPPORT=0,
|
||
|
# which requires that graph launch and non-captured launch to not overlap (I think,
|
||
|
# that's how I interpret the documentation). I'm not sure if this is required.
|
||
|
if torch.distributed.is_initialized():
|
||
|
torch.distributed.barrier()
|
||
|
torch.cuda.current_stream().wait_stream(s)
|
||
|
# Captures the graph
|
||
|
# To allow capture, automatically sets a side stream as the current stream in the context
|
||
|
graph = torch.cuda.CUDAGraph()
|
||
|
with torch.cuda.graph(graph, pool=mempool):
|
||
|
logits = model(
|
||
|
input_ids,
|
||
|
position_ids=position_ids,
|
||
|
inference_params=inference_params,
|
||
|
num_last_tokens=decoding_seqlen,
|
||
|
).logits
|
||
|
|
||
|
def run(new_input_ids, new_position_ids, seqlen):
|
||
|
inference_params.lengths_per_sample[:] = seqlen
|
||
|
input_ids.copy_(new_input_ids)
|
||
|
position_ids.copy_(new_position_ids)
|
||
|
graph.replay()
|
||
|
return logits.clone()
|
||
|
|
||
|
inference_params.seqlen_offset = seqlen_offset_og
|
||
|
return run
|