2024-10-09 11:35:06 +08:00
|
|
|
import datetime
|
|
|
|
|
2024-06-03 19:36:29 +08:00
|
|
|
import cv2
|
|
|
|
from net import Restormer_Encoder, Restormer_Decoder, BaseFeatureExtraction, DetailFeatureExtraction
|
|
|
|
import os
|
|
|
|
import numpy as np
|
|
|
|
from utils.Evaluator import Evaluator
|
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
from utils.img_read_save import img_save,image_read_cv2
|
|
|
|
import warnings
|
|
|
|
import logging
|
|
|
|
warnings.filterwarnings("ignore")
|
|
|
|
logging.basicConfig(level=logging.CRITICAL)
|
|
|
|
|
2024-10-09 11:35:06 +08:00
|
|
|
current_time = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
|
|
|
|
2024-06-03 19:36:29 +08:00
|
|
|
|
|
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
2024-11-16 12:59:07 +08:00
|
|
|
ckpt_path= r"/home/star/whaiDir/PFCFuse/models/whaiFusion11-15-22-09.pth"
|
2024-06-03 19:36:29 +08:00
|
|
|
|
2024-11-15 21:48:32 +08:00
|
|
|
for dataset_name in ["sar"]:
|
2024-06-03 19:36:29 +08:00
|
|
|
print("\n"*2+"="*80)
|
2024-11-16 12:59:07 +08:00
|
|
|
model_name="PFCFuse Enhance "
|
2024-06-03 19:36:29 +08:00
|
|
|
print("The test result of "+dataset_name+' :')
|
2024-10-09 11:35:06 +08:00
|
|
|
test_folder = os.path.join('test_img', dataset_name)
|
|
|
|
test_out_folder=os.path.join('test_result',current_time,dataset_name)
|
2024-06-03 19:36:29 +08:00
|
|
|
|
|
|
|
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
|
|
Encoder = nn.DataParallel(Restormer_Encoder()).to(device)
|
|
|
|
Decoder = nn.DataParallel(Restormer_Decoder()).to(device)
|
|
|
|
BaseFuseLayer = nn.DataParallel(BaseFeatureExtraction(dim=64)).to(device)
|
|
|
|
DetailFuseLayer = nn.DataParallel(DetailFeatureExtraction(num_layers=1)).to(device)
|
|
|
|
|
|
|
|
Encoder.load_state_dict(torch.load(ckpt_path)['DIDF_Encoder'],strict=False)
|
|
|
|
Decoder.load_state_dict(torch.load(ckpt_path)['DIDF_Decoder'])
|
|
|
|
BaseFuseLayer.load_state_dict(torch.load(ckpt_path)['BaseFuseLayer'])
|
|
|
|
DetailFuseLayer.load_state_dict(torch.load(ckpt_path)['DetailFuseLayer'])
|
|
|
|
Encoder.eval()
|
|
|
|
Decoder.eval()
|
|
|
|
BaseFuseLayer.eval()
|
|
|
|
DetailFuseLayer.eval()
|
|
|
|
|
|
|
|
with torch.no_grad():
|
|
|
|
for img_name in os.listdir(os.path.join(test_folder,"ir")):
|
|
|
|
|
|
|
|
data_IR=image_read_cv2(os.path.join(test_folder,"ir",img_name),mode='GRAY')[np.newaxis,np.newaxis, ...]/255.0
|
|
|
|
data_VIS = cv2.split(image_read_cv2(os.path.join(test_folder, "vi", img_name), mode='YCrCb'))[0][np.newaxis, np.newaxis, ...] / 255.0
|
|
|
|
data_VIS_BGR = cv2.imread(os.path.join(test_folder, "vi", img_name))
|
|
|
|
_, data_VIS_Cr, data_VIS_Cb = cv2.split(cv2.cvtColor(data_VIS_BGR, cv2.COLOR_BGR2YCrCb))
|
|
|
|
|
|
|
|
data_IR,data_VIS = torch.FloatTensor(data_IR),torch.FloatTensor(data_VIS)
|
|
|
|
data_VIS, data_IR = data_VIS.cuda(), data_IR.cuda()
|
|
|
|
|
|
|
|
feature_V_B, feature_V_D, feature_V = Encoder(data_VIS)
|
|
|
|
feature_I_B, feature_I_D, feature_I = Encoder(data_IR)
|
|
|
|
feature_F_B = BaseFuseLayer(feature_V_B + feature_I_B)
|
|
|
|
feature_F_D = DetailFuseLayer(feature_V_D + feature_I_D)
|
|
|
|
data_Fuse, _ = Decoder(data_VIS, feature_F_B, feature_F_D)
|
|
|
|
data_Fuse=(data_Fuse-torch.min(data_Fuse))/(torch.max(data_Fuse)-torch.min(data_Fuse))
|
|
|
|
fi = np.squeeze((data_Fuse * 255).cpu().numpy())
|
|
|
|
fi = fi.astype(np.uint8)
|
|
|
|
ycrcb_fi = np.dstack((fi, data_VIS_Cr, data_VIS_Cb))
|
|
|
|
rgb_fi = cv2.cvtColor(ycrcb_fi, cv2.COLOR_YCrCb2RGB)
|
|
|
|
img_save(rgb_fi, img_name.split(sep='.')[0], test_out_folder)
|
|
|
|
|
2024-10-05 20:49:35 +08:00
|
|
|
eval_folder=test_out_folder
|
2024-06-03 19:36:29 +08:00
|
|
|
ori_img_folder=test_folder
|
|
|
|
|
|
|
|
metric_result = np.zeros((8))
|
|
|
|
for img_name in os.listdir(os.path.join(ori_img_folder,"ir")):
|
|
|
|
ir = image_read_cv2(os.path.join(ori_img_folder,"ir", img_name), 'GRAY')
|
|
|
|
vi = image_read_cv2(os.path.join(ori_img_folder,"vi", img_name), 'GRAY')
|
|
|
|
fi = image_read_cv2(os.path.join(eval_folder, img_name.split('.')[0]+".png"), 'GRAY')
|
|
|
|
metric_result += np.array([Evaluator.EN(fi), Evaluator.SD(fi)
|
|
|
|
, Evaluator.SF(fi), Evaluator.MI(fi, ir, vi)
|
|
|
|
, Evaluator.SCD(fi, ir, vi), Evaluator.VIFF(fi, ir, vi)
|
|
|
|
, Evaluator.Qabf(fi, ir, vi), Evaluator.SSIM(fi, ir, vi)])
|
|
|
|
|
|
|
|
metric_result /= len(os.listdir(eval_folder))
|
|
|
|
print("\t\t EN\t SD\t SF\t MI\tSCD\tVIF\tQabf\tSSIM")
|
|
|
|
print(model_name+'\t'+str(np.round(metric_result[0], 2))+'\t'
|
|
|
|
+str(np.round(metric_result[1], 2))+'\t'
|
|
|
|
+str(np.round(metric_result[2], 2))+'\t'
|
|
|
|
+str(np.round(metric_result[3], 2))+'\t'
|
|
|
|
+str(np.round(metric_result[4], 2))+'\t'
|
|
|
|
+str(np.round(metric_result[5], 2))+'\t'
|
|
|
|
+str(np.round(metric_result[6], 2))+'\t'
|
|
|
|
+str(np.round(metric_result[7], 2))
|
|
|
|
)
|
2024-06-09 19:06:32 +08:00
|
|
|
print("="*80)
|