pfcfuse/dataprocessing.py

94 lines
3.3 KiB
Python
Raw Normal View History

2024-06-03 19:36:29 +08:00
import os
import h5py
import numpy as np
from tqdm import tqdm
from skimage.io import imread
def get_img_file(file_name):
imagelist = []
for parent, dirnames, filenames in os.walk(file_name):
for filename in filenames:
if filename.lower().endswith(('.bmp', '.dib', '.png', '.jpg', '.jpeg', '.pbm', '.pgm', '.ppm', '.tif', '.tiff', '.npy')):
imagelist.append(os.path.join(parent, filename))
return imagelist
2024-06-03 19:36:29 +08:00
def rgb2y(img):
y = img[0:1, :, :] * 0.299000 + img[1:2, :, :] * 0.587000 + img[2:3, :, :] * 0.114000
return y
def Im2Patch(img, win, stride=1):
k = 0
endc = img.shape[0]
endw = img.shape[1]
endh = img.shape[2]
patch = img[:, 0:endw-win+0+1:stride, 0:endh-win+0+1:stride]
TotalPatNum = patch.shape[1] * patch.shape[2]
Y = np.zeros([endc, win*win,TotalPatNum], np.float32)
for i in range(win):
for j in range(win):
patch = img[:,i:endw-win+i+1:stride,j:endh-win+j+1:stride]
Y[:,k,:] = np.array(patch[:]).reshape(endc, TotalPatNum)
k = k + 1
return Y.reshape([endc, win, win, TotalPatNum])
def is_low_contrast(image, fraction_threshold=0.1, lower_percentile=10,
upper_percentile=90):
"""Determine if an image is low contrast."""
limits = np.percentile(image, [lower_percentile, upper_percentile])
ratio = (limits[1] - limits[0]) / limits[1]
return ratio < fraction_threshold
data_name="YYX_sar_opr_data"
img_size=256 #patch size
2024-06-03 19:36:29 +08:00
stride=200 #patch stride
IR_files = sorted(get_img_file(r"/media/star/8TB/whaiDownload/YYX-OPT-SAR-main/SAR_1"))
VIS_files = sorted(get_img_file(r"/media/star/8TB/whaiDownload/YYX-OPT-SAR-main/OPR_1"))
2024-06-03 19:36:29 +08:00
assert len(IR_files) == len(VIS_files)
h5path= os.path.join('/home/star/whaiDir/PFCFuse/data/',
data_name+'_imgsize_'+str(img_size)+"_stride_"+str(stride)+'.h5')
h5f = h5py.File(h5path,
2024-06-03 19:36:29 +08:00
'w')
h5_ir = h5f.create_group('ir_patchs')
h5_vis = h5f.create_group('vis_patchs')
train_num=0
for i in tqdm(range(len(IR_files))):
I_VIS = imread(VIS_files[i]).astype(np.float32).transpose(2,0,1)/255. # [3, H, W] Uint8->float32
I_VIS = rgb2y(I_VIS) # [1, H, W] Float32
I_IR = imread(IR_files[i]).astype(np.float32)[None, :, :]/255. # [1, H, W] Float32
# crop
2024-06-03 19:36:29 +08:00
I_IR_Patch_Group = Im2Patch(I_IR,img_size,stride)
I_VIS_Patch_Group = Im2Patch(I_VIS, img_size, stride) # (3, 256, 256, 12)
2024-06-03 19:36:29 +08:00
for ii in range(I_IR_Patch_Group.shape[-1]):
bad_IR = is_low_contrast(I_IR_Patch_Group[0,:,:,ii])
bad_VIS = is_low_contrast(I_VIS_Patch_Group[0,:,:,ii])
# Determine if the contrast is low
if not (bad_IR or bad_VIS):
avl_IR= I_IR_Patch_Group[0,:,:,ii] # available IR
avl_VIS= I_VIS_Patch_Group[0,:,:,ii]
avl_IR=avl_IR[None,...]
avl_VIS=avl_VIS[None,...]
h5_ir.create_dataset(str(train_num), data=avl_IR,
2024-06-03 19:36:29 +08:00
dtype=avl_IR.dtype, shape=avl_IR.shape)
h5_vis.create_dataset(str(train_num), data=avl_VIS,
2024-06-03 19:36:29 +08:00
dtype=avl_VIS.dtype, shape=avl_VIS.shape)
train_num += 1
2024-06-03 19:36:29 +08:00
h5f.close()
with h5py.File(h5path,"r") as f:
2024-06-03 19:36:29 +08:00
for key in f.keys():
print(f[key], key, f[key].name)
2024-06-03 19:36:29 +08:00