198 lines
7.3 KiB
Python
198 lines
7.3 KiB
Python
|
import pywt
|
|||
|
import pywt.data
|
|||
|
import torch
|
|||
|
from torch import nn
|
|||
|
from torch.autograd import Function
|
|||
|
import torch.nn.functional as F
|
|||
|
|
|||
|
"""ECCV2024 https://arxiv.org/abs/2407.05848
|
|||
|
近年来,人们尝试增加卷积神经网络 (CNN) 的内核大小,以模拟 Vision Transformers (ViTs) 自注意力模块的全局接受场。
|
|||
|
然而,这种方法在实现全局接受场之前就很快达到上限并饱和。
|
|||
|
在这项研究中,我们证明了通过利用小波变换 (WT),实际上可以获得非常大的接受场,而不会遭受过度参数化,所提出的层名为 WTConv,
|
|||
|
可用作现有架构中的直接替换,产生有效的多频响应,并可随接受场的大小优雅地扩展。
|
|||
|
我们证明了 ConvNeXt 和 MobileNetV2 架构中 WTConv 层对图像分类的有效性,以及下游任务的主干,并表明它具有其他属性,
|
|||
|
例如对图像损坏的鲁棒性和对纹理形状的响应增强。
|
|||
|
"""
|
|||
|
|
|||
|
|
|||
|
def create_wavelet_filter(wave, in_size, out_size, type=torch.float):
|
|||
|
w = pywt.Wavelet(wave)
|
|||
|
dec_hi = torch.tensor(w.dec_hi[::-1], dtype=type)
|
|||
|
dec_lo = torch.tensor(w.dec_lo[::-1], dtype=type)
|
|||
|
dec_filters = torch.stack([dec_lo.unsqueeze(0) * dec_lo.unsqueeze(1),
|
|||
|
dec_lo.unsqueeze(0) * dec_hi.unsqueeze(1),
|
|||
|
dec_hi.unsqueeze(0) * dec_lo.unsqueeze(1),
|
|||
|
dec_hi.unsqueeze(0) * dec_hi.unsqueeze(1)], dim=0)
|
|||
|
|
|||
|
dec_filters = dec_filters[:, None].repeat(in_size, 1, 1, 1)
|
|||
|
|
|||
|
rec_hi = torch.tensor(w.rec_hi[::-1], dtype=type).flip(dims=[0])
|
|||
|
rec_lo = torch.tensor(w.rec_lo[::-1], dtype=type).flip(dims=[0])
|
|||
|
rec_filters = torch.stack([rec_lo.unsqueeze(0) * rec_lo.unsqueeze(1),
|
|||
|
rec_lo.unsqueeze(0) * rec_hi.unsqueeze(1),
|
|||
|
rec_hi.unsqueeze(0) * rec_lo.unsqueeze(1),
|
|||
|
rec_hi.unsqueeze(0) * rec_hi.unsqueeze(1)], dim=0)
|
|||
|
|
|||
|
rec_filters = rec_filters[:, None].repeat(out_size, 1, 1, 1)
|
|||
|
|
|||
|
return dec_filters, rec_filters
|
|||
|
|
|||
|
def wavelet_transform(x, filters):
|
|||
|
b, c, h, w = x.shape
|
|||
|
pad = (filters.shape[2] // 2 - 1, filters.shape[3] // 2 - 1)
|
|||
|
x = F.conv2d(x, filters, stride=2, groups=c, padding=pad)
|
|||
|
x = x.reshape(b, c, 4, h // 2, w // 2)
|
|||
|
return x
|
|||
|
|
|||
|
|
|||
|
def inverse_wavelet_transform(x, filters):
|
|||
|
b, c, _, h_half, w_half = x.shape
|
|||
|
pad = (filters.shape[2] // 2 - 1, filters.shape[3] // 2 - 1)
|
|||
|
x = x.reshape(b, c * 4, h_half, w_half)
|
|||
|
x = F.conv_transpose2d(x, filters, stride=2, groups=c, padding=pad)
|
|||
|
return x
|
|||
|
|
|||
|
|
|||
|
def wavelet_transform_init(filters):
|
|||
|
class WaveletTransform(Function):
|
|||
|
|
|||
|
@staticmethod
|
|||
|
def forward(ctx, input):
|
|||
|
with torch.no_grad():
|
|||
|
x = wavelet_transform(input, filters)
|
|||
|
return x
|
|||
|
|
|||
|
@staticmethod
|
|||
|
def backward(ctx, grad_output):
|
|||
|
grad = inverse_wavelet_transform(grad_output, filters)
|
|||
|
return grad, None
|
|||
|
|
|||
|
return WaveletTransform().apply
|
|||
|
|
|||
|
|
|||
|
def inverse_wavelet_transform_init(filters):
|
|||
|
class InverseWaveletTransform(Function):
|
|||
|
|
|||
|
@staticmethod
|
|||
|
def forward(ctx, input):
|
|||
|
with torch.no_grad():
|
|||
|
x = inverse_wavelet_transform(input, filters)
|
|||
|
return x
|
|||
|
|
|||
|
@staticmethod
|
|||
|
def backward(ctx, grad_output):
|
|||
|
grad = wavelet_transform(grad_output, filters)
|
|||
|
return grad, None
|
|||
|
|
|||
|
return InverseWaveletTransform().apply
|
|||
|
|
|||
|
|
|||
|
class WTConv2d(nn.Module):
|
|||
|
def __init__(self, in_channels, out_channels, kernel_size=5, stride=1, bias=True, wt_levels=1, wt_type='db1'):
|
|||
|
super(WTConv2d, self).__init__()
|
|||
|
|
|||
|
assert in_channels == out_channels
|
|||
|
|
|||
|
self.in_channels = in_channels
|
|||
|
self.wt_levels = wt_levels
|
|||
|
self.stride = stride
|
|||
|
self.dilation = 1
|
|||
|
|
|||
|
self.wt_filter, self.iwt_filter = create_wavelet_filter(wt_type, in_channels, in_channels, torch.float)
|
|||
|
self.wt_filter = nn.Parameter(self.wt_filter, requires_grad=False)
|
|||
|
self.iwt_filter = nn.Parameter(self.iwt_filter, requires_grad=False)
|
|||
|
|
|||
|
self.wt_function = wavelet_transform_init(self.wt_filter)
|
|||
|
self.iwt_function = inverse_wavelet_transform_init(self.iwt_filter)
|
|||
|
|
|||
|
self.base_conv = nn.Conv2d(in_channels, in_channels, kernel_size, padding='same', stride=1, dilation=1,
|
|||
|
groups=in_channels, bias=bias)
|
|||
|
self.base_scale = _ScaleModule([1, in_channels, 1, 1])
|
|||
|
|
|||
|
self.wavelet_convs = nn.ModuleList(
|
|||
|
[nn.Conv2d(in_channels * 4, in_channels * 4, kernel_size, padding='same', stride=1, dilation=1,
|
|||
|
groups=in_channels * 4, bias=False) for _ in range(self.wt_levels)]
|
|||
|
)
|
|||
|
self.wavelet_scale = nn.ModuleList(
|
|||
|
[_ScaleModule([1, in_channels * 4, 1, 1], init_scale=0.1) for _ in range(self.wt_levels)]
|
|||
|
)
|
|||
|
|
|||
|
if self.stride > 1:
|
|||
|
self.stride_filter = nn.Parameter(torch.ones(in_channels, 1, 1, 1), requires_grad=False)
|
|||
|
self.do_stride = lambda x_in: F.conv2d(x_in, self.stride_filter, bias=None, stride=self.stride,
|
|||
|
groups=in_channels)
|
|||
|
else:
|
|||
|
self.do_stride = None
|
|||
|
|
|||
|
def forward(self, x):
|
|||
|
|
|||
|
x_ll_in_levels = []
|
|||
|
x_h_in_levels = []
|
|||
|
shapes_in_levels = []
|
|||
|
|
|||
|
curr_x_ll = x
|
|||
|
|
|||
|
for i in range(self.wt_levels):
|
|||
|
curr_shape = curr_x_ll.shape
|
|||
|
shapes_in_levels.append(curr_shape)
|
|||
|
if (curr_shape[2] % 2 > 0) or (curr_shape[3] % 2 > 0):
|
|||
|
curr_pads = (0, curr_shape[3] % 2, 0, curr_shape[2] % 2)
|
|||
|
curr_x_ll = F.pad(curr_x_ll, curr_pads)
|
|||
|
|
|||
|
curr_x = self.wt_function(curr_x_ll)
|
|||
|
curr_x_ll = curr_x[:, :, 0, :, :]
|
|||
|
|
|||
|
shape_x = curr_x.shape
|
|||
|
curr_x_tag = curr_x.reshape(shape_x[0], shape_x[1] * 4, shape_x[3], shape_x[4])
|
|||
|
curr_x_tag = self.wavelet_scale[i](self.wavelet_convs[i](curr_x_tag))
|
|||
|
curr_x_tag = curr_x_tag.reshape(shape_x)
|
|||
|
|
|||
|
x_ll_in_levels.append(curr_x_tag[:, :, 0, :, :])
|
|||
|
x_h_in_levels.append(curr_x_tag[:, :, 1:4, :, :])
|
|||
|
|
|||
|
next_x_ll = 0
|
|||
|
|
|||
|
for i in range(self.wt_levels - 1, -1, -1):
|
|||
|
curr_x_ll = x_ll_in_levels.pop()
|
|||
|
curr_x_h = x_h_in_levels.pop()
|
|||
|
curr_shape = shapes_in_levels.pop()
|
|||
|
|
|||
|
curr_x_ll = curr_x_ll + next_x_ll
|
|||
|
|
|||
|
curr_x = torch.cat([curr_x_ll.unsqueeze(2), curr_x_h], dim=2)
|
|||
|
next_x_ll = self.iwt_function(curr_x)
|
|||
|
|
|||
|
next_x_ll = next_x_ll[:, :, :curr_shape[2], :curr_shape[3]]
|
|||
|
|
|||
|
x_tag = next_x_ll
|
|||
|
assert len(x_ll_in_levels) == 0
|
|||
|
|
|||
|
x = self.base_scale(self.base_conv(x))
|
|||
|
x = x + x_tag
|
|||
|
|
|||
|
if self.do_stride is not None:
|
|||
|
x = self.do_stride(x)
|
|||
|
|
|||
|
return x
|
|||
|
|
|||
|
|
|||
|
class _ScaleModule(nn.Module):
|
|||
|
def __init__(self, dims, init_scale=1.0, init_bias=0):
|
|||
|
super(_ScaleModule, self).__init__()
|
|||
|
self.dims = dims
|
|||
|
self.weight = nn.Parameter(torch.ones(*dims) * init_scale)
|
|||
|
self.bias = None
|
|||
|
|
|||
|
def forward(self, x):
|
|||
|
return torch.mul(self.weight, x)
|
|||
|
|
|||
|
|
|||
|
if __name__ == '__main__':
|
|||
|
in_channels = 3
|
|||
|
out_channels = 3
|
|||
|
|
|||
|
block = WTConv2d(in_channels, out_channels)
|
|||
|
input = torch.rand(1, in_channels, 64, 64)
|
|||
|
output = block(input)
|
|||
|
print(input.size())
|
|||
|
print(output.size())
|