修改代码结构,提高可读性和可维护性;调整训练输出频率。

改进 self.enhancement_module 为
        self.enhancement_module = WTConv2d(32, 32)
This commit is contained in:
whaifree 2024-10-08 16:50:11 +08:00
parent afd55abe9e
commit 96ce7d5fda
2 changed files with 2 additions and 6 deletions

6
net.py
View File

@ -248,11 +248,7 @@ class DetailFeatureExtraction(nn.Module):
super(DetailFeatureExtraction, self).__init__()
INNmodules = [DetailNode() for _ in range(num_layers)]
self.net = nn.Sequential(*INNmodules)
self.enhancement_module = nn.Sequential(
nn.Conv2d(32, 32, kernel_size=3, padding=1, bias=True),
nn.ReLU(inplace=True),
nn.Conv2d(32, 32, kernel_size=3, padding=1, bias=True),
)
self.enhancement_module = WTConv2d(32, 32)
def forward(self, x): # 1 64 128 128
z1, z2 = x[:, :x.shape[1] // 2], x[:, x.shape[1] // 2:x.shape[1]] # 1 32 128 128

View File

@ -222,7 +222,7 @@ for epoch in range(num_epochs):
time_left = datetime.timedelta(seconds=batches_left * (time.time() - prev_time))
epoch_time = time.time() - prev_time
prev_time = time.time()
if step % 100 == 0:
if i % 100 == 0:
sys.stdout.write(
"\r[Epoch %d/%d] [Batch %d/%d] [loss: %f] ETA: %.10s"
% (