Compare commits
1 Commits
main
...
origin_pfc
Author | SHA1 | Date | |
---|---|---|---|
f95b13b8aa |
1
.gitignore
vendored
Normal file
1
.gitignore
vendored
Normal file
@ -0,0 +1 @@
|
||||
.idea/
|
592
ConvSSM.py
592
ConvSSM.py
@ -1,592 +0,0 @@
|
||||
import time
|
||||
import math
|
||||
from functools import partial
|
||||
from typing import Optional, Callable
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import torch.utils.checkpoint as checkpoint
|
||||
from einops import rearrange, repeat
|
||||
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
|
||||
# try:
|
||||
# from mamba_ssm.ops.selective_scan_interface import selective_scan_fn, selective_scan_ref
|
||||
# except:
|
||||
# pass
|
||||
|
||||
# an alternative for mamba_ssm (in which causal_conv1d is needed)
|
||||
try:
|
||||
from mamba_ssm.ops.selective_scan_interface import selective_scan_fn, selective_scan_ref
|
||||
|
||||
# from mamba_ssm.selective_scan import selective_scan_fn as selective_scan_fn_v1
|
||||
# from selective_scan import selective_scan_ref as selective_scan_ref_v1
|
||||
except:
|
||||
pass
|
||||
|
||||
DropPath.__repr__ = lambda self: f"timm.DropPath({self.drop_prob})"
|
||||
|
||||
|
||||
"""
|
||||
CNN在远程建模能力方面的局限性使它们无法有效地提取图像中的特征,而Transformers则受到其二次计算复杂性的阻碍。最近的研究表明,以Mamba为代表的状态空间模型(SSM)可以在保持线性计算复杂度的同时有效地模拟长程相互作用。
|
||||
我们介绍了一个新颖的Conv-SSM模块。Conv-SSM将卷积层的局部特征提取能力与SSM捕获长程依赖性的能力相结合。
|
||||
"""
|
||||
|
||||
|
||||
def flops_selective_scan_ref(B=1, L=256, D=768, N=16, with_D=True, with_Z=False, with_Group=True, with_complex=False):
|
||||
"""
|
||||
u: r(B D L)
|
||||
delta: r(B D L)
|
||||
A: r(D N)
|
||||
B: r(B N L)
|
||||
C: r(B N L)
|
||||
D: r(D)
|
||||
z: r(B D L)
|
||||
delta_bias: r(D), fp32
|
||||
|
||||
ignores:
|
||||
[.float(), +, .softplus, .shape, new_zeros, repeat, stack, to(dtype), silu]
|
||||
"""
|
||||
import numpy as np
|
||||
|
||||
# fvcore.nn.jit_handles
|
||||
def get_flops_einsum(input_shapes, equation):
|
||||
np_arrs = [np.zeros(s) for s in input_shapes]
|
||||
optim = np.einsum_path(equation, *np_arrs, optimize="optimal")[1]
|
||||
for line in optim.split("\n"):
|
||||
if "optimized flop" in line.lower():
|
||||
# divided by 2 because we count MAC (multiply-add counted as one flop)
|
||||
flop = float(np.floor(float(line.split(":")[-1]) / 2))
|
||||
return flop
|
||||
|
||||
assert not with_complex
|
||||
|
||||
flops = 0 # below code flops = 0
|
||||
if False:
|
||||
...
|
||||
"""
|
||||
dtype_in = u.dtype
|
||||
u = u.float()
|
||||
delta = delta.float()
|
||||
if delta_bias is not None:
|
||||
delta = delta + delta_bias[..., None].float()
|
||||
if delta_softplus:
|
||||
delta = F.softplus(delta)
|
||||
batch, dim, dstate = u.shape[0], A.shape[0], A.shape[1]
|
||||
is_variable_B = B.dim() >= 3
|
||||
is_variable_C = C.dim() >= 3
|
||||
if A.is_complex():
|
||||
if is_variable_B:
|
||||
B = torch.view_as_complex(rearrange(B.float(), "... (L two) -> ... L two", two=2))
|
||||
if is_variable_C:
|
||||
C = torch.view_as_complex(rearrange(C.float(), "... (L two) -> ... L two", two=2))
|
||||
else:
|
||||
B = B.float()
|
||||
C = C.float()
|
||||
x = A.new_zeros((batch, dim, dstate))
|
||||
ys = []
|
||||
"""
|
||||
|
||||
flops += get_flops_einsum([[B, D, L], [D, N]], "bdl,dn->bdln")
|
||||
if with_Group:
|
||||
flops += get_flops_einsum([[B, D, L], [B, N, L], [B, D, L]], "bdl,bnl,bdl->bdln")
|
||||
else:
|
||||
flops += get_flops_einsum([[B, D, L], [B, D, N, L], [B, D, L]], "bdl,bdnl,bdl->bdln")
|
||||
if False:
|
||||
...
|
||||
"""
|
||||
deltaA = torch.exp(torch.einsum('bdl,dn->bdln', delta, A))
|
||||
if not is_variable_B:
|
||||
deltaB_u = torch.einsum('bdl,dn,bdl->bdln', delta, B, u)
|
||||
else:
|
||||
if B.dim() == 3:
|
||||
deltaB_u = torch.einsum('bdl,bnl,bdl->bdln', delta, B, u)
|
||||
else:
|
||||
B = repeat(B, "B G N L -> B (G H) N L", H=dim // B.shape[1])
|
||||
deltaB_u = torch.einsum('bdl,bdnl,bdl->bdln', delta, B, u)
|
||||
if is_variable_C and C.dim() == 4:
|
||||
C = repeat(C, "B G N L -> B (G H) N L", H=dim // C.shape[1])
|
||||
last_state = None
|
||||
"""
|
||||
|
||||
in_for_flops = B * D * N
|
||||
if with_Group:
|
||||
in_for_flops += get_flops_einsum([[B, D, N], [B, D, N]], "bdn,bdn->bd")
|
||||
else:
|
||||
in_for_flops += get_flops_einsum([[B, D, N], [B, N]], "bdn,bn->bd")
|
||||
flops += L * in_for_flops
|
||||
if False:
|
||||
...
|
||||
"""
|
||||
for i in range(u.shape[2]):
|
||||
x = deltaA[:, :, i] * x + deltaB_u[:, :, i]
|
||||
if not is_variable_C:
|
||||
y = torch.einsum('bdn,dn->bd', x, C)
|
||||
else:
|
||||
if C.dim() == 3:
|
||||
y = torch.einsum('bdn,bn->bd', x, C[:, :, i])
|
||||
else:
|
||||
y = torch.einsum('bdn,bdn->bd', x, C[:, :, :, i])
|
||||
if i == u.shape[2] - 1:
|
||||
last_state = x
|
||||
if y.is_complex():
|
||||
y = y.real * 2
|
||||
ys.append(y)
|
||||
y = torch.stack(ys, dim=2) # (batch dim L)
|
||||
"""
|
||||
|
||||
if with_D:
|
||||
flops += B * D * L
|
||||
if with_Z:
|
||||
flops += B * D * L
|
||||
if False:
|
||||
...
|
||||
"""
|
||||
out = y if D is None else y + u * rearrange(D, "d -> d 1")
|
||||
if z is not None:
|
||||
out = out * F.silu(z)
|
||||
out = out.to(dtype=dtype_in)
|
||||
"""
|
||||
|
||||
return flops
|
||||
|
||||
|
||||
class PatchEmbed2D(nn.Module):
|
||||
r""" Image to Patch Embedding
|
||||
Args:
|
||||
patch_size (int): Patch token size. Default: 4.
|
||||
in_chans (int): Number of input image channels. Default: 3.
|
||||
embed_dim (int): Number of linear projection output channels. Default: 96.
|
||||
norm_layer (nn.Module, optional): Normalization layer. Default: None
|
||||
"""
|
||||
|
||||
def __init__(self, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None, **kwargs):
|
||||
super().__init__()
|
||||
if isinstance(patch_size, int):
|
||||
patch_size = (patch_size, patch_size)
|
||||
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
||||
if norm_layer is not None:
|
||||
self.norm = norm_layer(embed_dim)
|
||||
else:
|
||||
self.norm = None
|
||||
|
||||
def forward(self, x):
|
||||
x = self.proj(x).permute(0, 2, 3, 1)
|
||||
if self.norm is not None:
|
||||
x = self.norm(x)
|
||||
return x
|
||||
|
||||
|
||||
class PatchMerging2D(nn.Module):
|
||||
r""" Patch Merging Layer.
|
||||
Args:
|
||||
input_resolution (tuple[int]): Resolution of input feature.
|
||||
dim (int): Number of input channels.
|
||||
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
||||
"""
|
||||
|
||||
def __init__(self, dim, norm_layer=nn.LayerNorm):
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
|
||||
self.norm = norm_layer(4 * dim)
|
||||
|
||||
def forward(self, x):
|
||||
B, H, W, C = x.shape
|
||||
|
||||
SHAPE_FIX = [-1, -1]
|
||||
if (W % 2 != 0) or (H % 2 != 0):
|
||||
print(f"Warning, x.shape {x.shape} is not match even ===========", flush=True)
|
||||
SHAPE_FIX[0] = H // 2
|
||||
SHAPE_FIX[1] = W // 2
|
||||
|
||||
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
|
||||
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
|
||||
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
|
||||
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
|
||||
|
||||
if SHAPE_FIX[0] > 0:
|
||||
x0 = x0[:, :SHAPE_FIX[0], :SHAPE_FIX[1], :]
|
||||
x1 = x1[:, :SHAPE_FIX[0], :SHAPE_FIX[1], :]
|
||||
x2 = x2[:, :SHAPE_FIX[0], :SHAPE_FIX[1], :]
|
||||
x3 = x3[:, :SHAPE_FIX[0], :SHAPE_FIX[1], :]
|
||||
|
||||
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
|
||||
x = x.view(B, H // 2, W // 2, 4 * C) # B H/2*W/2 4*C
|
||||
|
||||
x = self.norm(x)
|
||||
x = self.reduction(x)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class PatchExpand2D(nn.Module):
|
||||
def __init__(self, dim, dim_scale=2, norm_layer=nn.LayerNorm):
|
||||
super().__init__()
|
||||
self.dim = dim * 2
|
||||
self.dim_scale = dim_scale
|
||||
self.expand = nn.Linear(self.dim, dim_scale * self.dim, bias=False)
|
||||
self.norm = norm_layer(self.dim // dim_scale)
|
||||
|
||||
def forward(self, x):
|
||||
B, H, W, C = x.shape
|
||||
x = self.expand(x)
|
||||
|
||||
x = rearrange(x, 'b h w (p1 p2 c)-> b (h p1) (w p2) c', p1=self.dim_scale, p2=self.dim_scale,
|
||||
c=C // self.dim_scale)
|
||||
x = self.norm(x)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class Final_PatchExpand2D(nn.Module):
|
||||
def __init__(self, dim, dim_scale=4, norm_layer=nn.LayerNorm):
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
self.dim_scale = dim_scale
|
||||
self.expand = nn.Linear(self.dim, dim_scale * self.dim, bias=False)
|
||||
self.norm = norm_layer(self.dim // dim_scale)
|
||||
|
||||
def forward(self, x):
|
||||
B, H, W, C = x.shape
|
||||
x = self.expand(x)
|
||||
|
||||
x = rearrange(x, 'b h w (p1 p2 c)-> b (h p1) (w p2) c', p1=self.dim_scale, p2=self.dim_scale,
|
||||
c=C // self.dim_scale)
|
||||
x = self.norm(x)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class SS2D(nn.Module): # SS2D(State Space Model 2D)类,它是实现状态空间模型(SSM)在视觉任务中应用的核心部分。这个类将状态空间模型的长程依赖性建模能力与卷积操作结合起来,旨在捕获图像中的长程相互作用,同时保持对局部特征的敏感度。
|
||||
def __init__(
|
||||
self,
|
||||
d_model,
|
||||
d_state=16,
|
||||
# d_state="auto", # 20240109
|
||||
d_conv=3,
|
||||
expand=2,
|
||||
dt_rank="auto",
|
||||
dt_min=0.001,
|
||||
dt_max=0.1,
|
||||
dt_init="random",
|
||||
dt_scale=1.0,
|
||||
dt_init_floor=1e-4,
|
||||
dropout=0.,
|
||||
conv_bias=True,
|
||||
bias=False,
|
||||
device=None,
|
||||
dtype=None,
|
||||
**kwargs,
|
||||
):
|
||||
factory_kwargs = {"device": device, "dtype": dtype}
|
||||
super().__init__()
|
||||
self.d_model = d_model
|
||||
self.d_state = d_state
|
||||
# self.d_state = math.ceil(self.d_model / 6) if d_state == "auto" else d_model # 20240109
|
||||
self.d_conv = d_conv
|
||||
self.expand = expand
|
||||
self.d_inner = int(self.expand * self.d_model)
|
||||
self.dt_rank = math.ceil(self.d_model / 16) if dt_rank == "auto" else dt_rank
|
||||
|
||||
self.in_proj = nn.Linear(self.d_model, self.d_inner * 2, bias=bias, **factory_kwargs)
|
||||
self.conv2d = nn.Conv2d(
|
||||
in_channels=self.d_inner,
|
||||
out_channels=self.d_inner,
|
||||
groups=self.d_inner,
|
||||
bias=conv_bias,
|
||||
kernel_size=d_conv,
|
||||
padding=(d_conv - 1) // 2,
|
||||
**factory_kwargs,
|
||||
)
|
||||
self.act = nn.SiLU()
|
||||
|
||||
self.x_proj = (
|
||||
nn.Linear(self.d_inner, (self.dt_rank + self.d_state * 2), bias=False, **factory_kwargs),
|
||||
nn.Linear(self.d_inner, (self.dt_rank + self.d_state * 2), bias=False, **factory_kwargs),
|
||||
nn.Linear(self.d_inner, (self.dt_rank + self.d_state * 2), bias=False, **factory_kwargs),
|
||||
nn.Linear(self.d_inner, (self.dt_rank + self.d_state * 2), bias=False, **factory_kwargs),
|
||||
)
|
||||
self.x_proj_weight = nn.Parameter(torch.stack([t.weight for t in self.x_proj], dim=0)) # (K=4, N, inner)
|
||||
del self.x_proj
|
||||
|
||||
self.dt_projs = (
|
||||
self.dt_init(self.dt_rank, self.d_inner, dt_scale, dt_init, dt_min, dt_max, dt_init_floor,
|
||||
**factory_kwargs),
|
||||
self.dt_init(self.dt_rank, self.d_inner, dt_scale, dt_init, dt_min, dt_max, dt_init_floor,
|
||||
**factory_kwargs),
|
||||
self.dt_init(self.dt_rank, self.d_inner, dt_scale, dt_init, dt_min, dt_max, dt_init_floor,
|
||||
**factory_kwargs),
|
||||
self.dt_init(self.dt_rank, self.d_inner, dt_scale, dt_init, dt_min, dt_max, dt_init_floor,
|
||||
**factory_kwargs),
|
||||
)
|
||||
self.dt_projs_weight = nn.Parameter(torch.stack([t.weight for t in self.dt_projs], dim=0)) # (K=4, inner, rank)
|
||||
self.dt_projs_bias = nn.Parameter(torch.stack([t.bias for t in self.dt_projs], dim=0)) # (K=4, inner)
|
||||
del self.dt_projs
|
||||
|
||||
self.A_logs = self.A_log_init(self.d_state, self.d_inner, copies=4, merge=True) # (K=4, D, N)
|
||||
self.Ds = self.D_init(self.d_inner, copies=4, merge=True) # (K=4, D, N)
|
||||
|
||||
self.selective_scan = selective_scan_fn
|
||||
self.forward_core = self.forward_corev0
|
||||
|
||||
self.out_norm = nn.LayerNorm(self.d_inner)
|
||||
self.out_proj = nn.Linear(self.d_inner, self.d_model, bias=bias, **factory_kwargs)
|
||||
self.dropout = nn.Dropout(dropout) if dropout > 0. else None
|
||||
|
||||
@staticmethod
|
||||
def dt_init(dt_rank, d_inner, dt_scale=1.0, dt_init="random", dt_min=0.001, dt_max=0.1, dt_init_floor=1e-4,
|
||||
**factory_kwargs):
|
||||
dt_proj = nn.Linear(dt_rank, d_inner, bias=True, **factory_kwargs)
|
||||
|
||||
# Initialize special dt projection to preserve variance at initialization
|
||||
dt_init_std = dt_rank ** -0.5 * dt_scale
|
||||
if dt_init == "constant":
|
||||
nn.init.constant_(dt_proj.weight, dt_init_std)
|
||||
elif dt_init == "random":
|
||||
nn.init.uniform_(dt_proj.weight, -dt_init_std, dt_init_std)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
# Initialize dt bias so that F.softplus(dt_bias) is between dt_min and dt_max
|
||||
dt = torch.exp(
|
||||
torch.rand(d_inner, **factory_kwargs) * (math.log(dt_max) - math.log(dt_min))
|
||||
+ math.log(dt_min)
|
||||
).clamp(min=dt_init_floor)
|
||||
# Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759
|
||||
inv_dt = dt + torch.log(-torch.expm1(-dt))
|
||||
with torch.no_grad():
|
||||
dt_proj.bias.copy_(inv_dt)
|
||||
# Our initialization would set all Linear.bias to zero, need to mark this one as _no_reinit
|
||||
dt_proj.bias._no_reinit = True
|
||||
|
||||
return dt_proj
|
||||
|
||||
@staticmethod
|
||||
def A_log_init(d_state, d_inner, copies=1, device=None, merge=True):
|
||||
# S4D real initialization
|
||||
A = repeat(
|
||||
torch.arange(1, d_state + 1, dtype=torch.float32, device=device),
|
||||
"n -> d n",
|
||||
d=d_inner,
|
||||
).contiguous()
|
||||
A_log = torch.log(A) # Keep A_log in fp32
|
||||
if copies > 1:
|
||||
A_log = repeat(A_log, "d n -> r d n", r=copies)
|
||||
if merge:
|
||||
A_log = A_log.flatten(0, 1)
|
||||
A_log = nn.Parameter(A_log)
|
||||
A_log._no_weight_decay = True
|
||||
return A_log
|
||||
|
||||
@staticmethod
|
||||
def D_init(d_inner, copies=1, device=None, merge=True):
|
||||
# D "skip" parameter
|
||||
D = torch.ones(d_inner, device=device)
|
||||
if copies > 1:
|
||||
D = repeat(D, "n1 -> r n1", r=copies)
|
||||
if merge:
|
||||
D = D.flatten(0, 1)
|
||||
D = nn.Parameter(D) # Keep in fp32
|
||||
D._no_weight_decay = True
|
||||
return D
|
||||
|
||||
def forward_corev0(self, x: torch.Tensor):
|
||||
self.selective_scan = selective_scan_fn
|
||||
|
||||
B, C, H, W = x.shape
|
||||
L = H * W
|
||||
K = 4
|
||||
|
||||
x_hwwh = torch.stack([x.view(B, -1, L), torch.transpose(x, dim0=2, dim1=3).contiguous().view(B, -1, L)],
|
||||
dim=1).view(B, 2, -1, L)
|
||||
xs = torch.cat([x_hwwh, torch.flip(x_hwwh, dims=[-1])], dim=1) # (b, k, d, l)
|
||||
|
||||
x_dbl = torch.einsum("b k d l, k c d -> b k c l", xs.view(B, K, -1, L), self.x_proj_weight)
|
||||
# x_dbl = x_dbl + self.x_proj_bias.view(1, K, -1, 1)
|
||||
dts, Bs, Cs = torch.split(x_dbl, [self.dt_rank, self.d_state, self.d_state], dim=2)
|
||||
dts = torch.einsum("b k r l, k d r -> b k d l", dts.view(B, K, -1, L), self.dt_projs_weight)
|
||||
# dts = dts + self.dt_projs_bias.view(1, K, -1, 1)
|
||||
|
||||
xs = xs.float().view(B, -1, L) # (b, k * d, l)
|
||||
dts = dts.contiguous().float().view(B, -1, L) # (b, k * d, l)
|
||||
Bs = Bs.float().view(B, K, -1, L) # (b, k, d_state, l)
|
||||
Cs = Cs.float().view(B, K, -1, L) # (b, k, d_state, l)
|
||||
Ds = self.Ds.float().view(-1) # (k * d)
|
||||
As = -torch.exp(self.A_logs.float()).view(-1, self.d_state) # (k * d, d_state)
|
||||
dt_projs_bias = self.dt_projs_bias.float().view(-1) # (k * d)
|
||||
|
||||
out_y = self.selective_scan(
|
||||
xs, dts,
|
||||
As, Bs, Cs, Ds, z=None,
|
||||
delta_bias=dt_projs_bias,
|
||||
delta_softplus=True,
|
||||
return_last_state=False,
|
||||
).view(B, K, -1, L)
|
||||
assert out_y.dtype == torch.float
|
||||
|
||||
inv_y = torch.flip(out_y[:, 2:4], dims=[-1]).view(B, 2, -1, L)
|
||||
wh_y = torch.transpose(out_y[:, 1].view(B, -1, W, H), dim0=2, dim1=3).contiguous().view(B, -1, L)
|
||||
invwh_y = torch.transpose(inv_y[:, 1].view(B, -1, W, H), dim0=2, dim1=3).contiguous().view(B, -1, L)
|
||||
|
||||
return out_y[:, 0], inv_y[:, 0], wh_y, invwh_y
|
||||
|
||||
# an alternative to forward_corev1
|
||||
def forward_corev1(self, x: torch.Tensor):
|
||||
self.selective_scan = selective_scan_fn
|
||||
|
||||
B, C, H, W = x.shape
|
||||
L = H * W
|
||||
K = 4
|
||||
|
||||
x_hwwh = torch.stack([x.view(B, -1, L), torch.transpose(x, dim0=2, dim1=3).contiguous().view(B, -1, L)],
|
||||
dim=1).view(B, 2, -1, L)
|
||||
xs = torch.cat([x_hwwh, torch.flip(x_hwwh, dims=[-1])], dim=1) # (b, k, d, l)
|
||||
|
||||
x_dbl = torch.einsum("b k d l, k c d -> b k c l", xs.view(B, K, -1, L), self.x_proj_weight)
|
||||
# x_dbl = x_dbl + self.x_proj_bias.view(1, K, -1, 1)
|
||||
dts, Bs, Cs = torch.split(x_dbl, [self.dt_rank, self.d_state, self.d_state], dim=2)
|
||||
dts = torch.einsum("b k r l, k d r -> b k d l", dts.view(B, K, -1, L), self.dt_projs_weight)
|
||||
# dts = dts + self.dt_projs_bias.view(1, K, -1, 1)
|
||||
|
||||
xs = xs.float().view(B, -1, L) # (b, k * d, l)
|
||||
dts = dts.contiguous().float().view(B, -1, L) # (b, k * d, l)
|
||||
Bs = Bs.float().view(B, K, -1, L) # (b, k, d_state, l)
|
||||
Cs = Cs.float().view(B, K, -1, L) # (b, k, d_state, l)
|
||||
Ds = self.Ds.float().view(-1) # (k * d)
|
||||
As = -torch.exp(self.A_logs.float()).view(-1, self.d_state) # (k * d, d_state)
|
||||
dt_projs_bias = self.dt_projs_bias.float().view(-1) # (k * d)
|
||||
|
||||
out_y = self.selective_scan(
|
||||
xs, dts,
|
||||
As, Bs, Cs, Ds,
|
||||
delta_bias=dt_projs_bias,
|
||||
delta_softplus=True,
|
||||
).view(B, K, -1, L)
|
||||
assert out_y.dtype == torch.float
|
||||
|
||||
inv_y = torch.flip(out_y[:, 2:4], dims=[-1]).view(B, 2, -1, L)
|
||||
wh_y = torch.transpose(out_y[:, 1].view(B, -1, W, H), dim0=2, dim1=3).contiguous().view(B, -1, L)
|
||||
invwh_y = torch.transpose(inv_y[:, 1].view(B, -1, W, H), dim0=2, dim1=3).contiguous().view(B, -1, L)
|
||||
|
||||
return out_y[:, 0], inv_y[:, 0], wh_y, invwh_y
|
||||
|
||||
def forward(self, x: torch.Tensor, **kwargs):
|
||||
B, H, W, C = x.shape
|
||||
|
||||
xz = self.in_proj(x)
|
||||
x, z = xz.chunk(2, dim=-1) # (b, h, w, d)
|
||||
|
||||
x = x.permute(0, 3, 1, 2).contiguous()
|
||||
x = self.act(self.conv2d(x)) # (b, d, h, w)
|
||||
y1, y2, y3, y4 = self.forward_core(x)
|
||||
assert y1.dtype == torch.float32
|
||||
y = y1 + y2 + y3 + y4
|
||||
y = torch.transpose(y, dim0=1, dim1=2).contiguous().view(B, H, W, -1)
|
||||
y = self.out_norm(y)
|
||||
y = y * F.silu(z)
|
||||
out = self.out_proj(y)
|
||||
if self.dropout is not None:
|
||||
out = self.dropout(out)
|
||||
return out
|
||||
|
||||
|
||||
class ConvSSM(nn.Module):
|
||||
"""
|
||||
这个类组合了自注意力机制和卷积操作,旨在融合自注意力的全局感知能力和卷积的局部特征提取能力。
|
||||
输入特征被分成两部分,一部分通过SS2D自注意力模块处理,另一部分通过一系列卷积层处理。处理后的两部分再次合并,并通过最终的卷积层生成输出特征。
|
||||
"""
|
||||
def __init__(
|
||||
self,
|
||||
hidden_dim: int = 0,
|
||||
drop_path: float = 0,
|
||||
norm_layer: Callable[..., torch.nn.Module] = partial(nn.LayerNorm, eps=1e-6),
|
||||
attn_drop_rate: float = 0,
|
||||
d_state: int = 16,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__()
|
||||
self.ln_1 = norm_layer(hidden_dim // 2)
|
||||
self.self_attention = SS2D(d_model=hidden_dim // 2, dropout=attn_drop_rate, d_state=d_state, **kwargs)
|
||||
self.drop_path = DropPath(drop_path)
|
||||
|
||||
self.conv33conv33conv11 = nn.Sequential(
|
||||
nn.Conv2d(in_channels=hidden_dim // 2, out_channels=hidden_dim // 2, kernel_size=3, stride=1, padding=1),
|
||||
nn.BatchNorm2d(hidden_dim // 2),
|
||||
nn.ReLU(),
|
||||
nn.Conv2d(in_channels=hidden_dim // 2, out_channels=hidden_dim // 2, kernel_size=3, stride=1, padding=1),
|
||||
nn.BatchNorm2d(hidden_dim // 2),
|
||||
nn.ReLU(),
|
||||
nn.Conv2d(in_channels=hidden_dim // 2, out_channels=hidden_dim // 2, kernel_size=1, stride=1)
|
||||
)
|
||||
self.finalconv11 = nn.Conv2d(in_channels=hidden_dim, out_channels=hidden_dim, kernel_size=1, stride=1)
|
||||
|
||||
# def forward(self, input: torch.Tensor):
|
||||
#
|
||||
#
|
||||
# """
|
||||
# <img src="http://42.192.130.83:9000/picgo/imgs/image-20240502123357829.png" alt="image-202http://42.192.130.83:9000/picgo/imgs/image-20240502123357829.png
|
||||
#
|
||||
# """
|
||||
#
|
||||
# # 将输入图像在最后一个维度上切分成两半 left 4 32 32 64 right 4 32 32 64
|
||||
# input_left, input_right = input.chunk(2, dim=-1)
|
||||
# # 应用自注意力机制,并经过drop_path和ln_1(层归一化)处理input_right
|
||||
# # self.self_attention为SS2D模块,它实现了自注意力机制
|
||||
# x = input_right + self.drop_path(self.self_attention(self.ln_1(input_right))) # 4 32 32 64
|
||||
# # 将x的维度置换回与input_left匹配,以便后续合并
|
||||
# x = x.permute(0, 3, 1, 2).contiguous() # 4 64 32 32
|
||||
#
|
||||
# # 对input_left进行维度置换,以适配后续卷积操作的需要
|
||||
# input_left = input_left.permute(0, 3, 1, 2).contiguous() # 4 64 32 32
|
||||
# # 应用特定结构的卷积操作 conv33conv33conv11
|
||||
# input_left = self.conv33conv33conv11(input_left) # 4 64 32 32
|
||||
#
|
||||
# output = torch.cat((input_left, x), dim=1) # 4 128 32 32
|
||||
# output = self.finalconv11(output).permute(0, 2, 3, 1).contiguous() # 4 32 32 128
|
||||
# return output + input
|
||||
def forward(self, input: torch.Tensor):
|
||||
|
||||
|
||||
"""
|
||||
<img src="http://42.192.130.83:9000/picgo/imgs/image-20240502123357829.png" alt="image-202http://42.192.130.83:9000/picgo/imgs/image-20240502123357829.png
|
||||
|
||||
"""
|
||||
input = input.permute(0, 2, 3, 1)
|
||||
print(input.is_cuda)
|
||||
# 将输入图像在最后一个维度上切分成两半 left 4 32 32 64 right 4 32 32 64
|
||||
input_left, input_right = input.chunk(2, dim=-1)
|
||||
# 应用自注意力机制,并经过drop_path和ln_1(层归一化)处理input_right
|
||||
# self.self_attention为SS2D模块,它实现了自注意力机制
|
||||
x = input_right + self.drop_path(self.self_attention(self.ln_1(input_right))) # 4 32 32 64
|
||||
# 将x的维度置换回与input_left匹配,以便后续合并
|
||||
x = x.permute(0, 3, 1, 2).contiguous() # 4 64 32 32
|
||||
|
||||
# 对input_left进行维度置换,以适配后续卷积操作的需要
|
||||
input_left = input_left.permute(0, 3, 1, 2).contiguous() # 4 64 32 32
|
||||
# 应用特定结构的卷积操作 conv33conv33conv11
|
||||
input_left = self.conv33conv33conv11(input_left) # 4 64 32 32
|
||||
|
||||
output = torch.cat((input_left, x), dim=1) # 4 128 32 32
|
||||
output = self.finalconv11(output).permute(0, 2, 3, 1).contiguous() # 4 32 32 128
|
||||
|
||||
return (output + input).permute(0, 3, 1, 2)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# 初始化ConvSSM模块,hidden_dim为128
|
||||
# block = ConvSSM(hidden_dim=128)
|
||||
block = ConvSSM(hidden_dim=4)
|
||||
|
||||
# 生成随机输入张量,尺寸为[批次大小, 高度, 宽度, 通道数]
|
||||
# 这里批次大小为4,高度和宽度为32,通道数为128(符合hidden_dim的大小)
|
||||
# input_tensor = torch.rand(4, 32, 32, 128)
|
||||
# input_tensor = torch.rand(2, 1, 256, 128)
|
||||
input_tensor = torch.rand(2, 4, 256, 256).cuda()
|
||||
|
||||
|
||||
# 前向传递输入张量通过ConvSSM模块
|
||||
output = block(input_tensor)
|
||||
|
||||
# 打印输入和输出张量的尺寸
|
||||
print("Input tensor size:", input_tensor.size())
|
||||
print("Output tensor size:", output.size())
|
@ -1,548 +0,0 @@
|
||||
import time
|
||||
import math
|
||||
from functools import partial
|
||||
from typing import Optional, Callable
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import torch.utils.checkpoint as checkpoint
|
||||
from einops import rearrange, repeat
|
||||
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
|
||||
|
||||
try:
|
||||
from mamba_ssm.ops.selective_scan_interface import selective_scan_fn, selective_scan_ref
|
||||
except:
|
||||
pass
|
||||
|
||||
# an alternative for mamba_ssm (in which causal_conv1d is needed)
|
||||
try:
|
||||
from selective_scan import selective_scan_fn as selective_scan_fn_v1
|
||||
from selective_scan import selective_scan_ref as selective_scan_ref_v1
|
||||
except:
|
||||
pass
|
||||
|
||||
DropPath.__repr__ = lambda self: f"timm.DropPath({self.drop_prob})"
|
||||
|
||||
"""
|
||||
CNN在远程建模能力方面的局限性使它们无法有效地提取图像中的特征,而Transformers则受到其二次计算复杂性的阻碍。最近的研究表明,以Mamba为代表的状态空间模型(SSM)可以在保持线性计算复杂度的同时有效地模拟长程相互作用。
|
||||
我们介绍了一个新颖的Conv-SSM模块。Conv-SSM将卷积层的局部特征提取能力与SSM捕获长程依赖性的能力相结合。
|
||||
"""
|
||||
|
||||
|
||||
def flops_selective_scan_ref(B=1, L=256, D=768, N=16, with_D=True, with_Z=False, with_Group=True, with_complex=False):
|
||||
"""
|
||||
u: r(B D L)
|
||||
delta: r(B D L)
|
||||
A: r(D N)
|
||||
B: r(B N L)
|
||||
C: r(B N L)
|
||||
D: r(D)
|
||||
z: r(B D L)
|
||||
delta_bias: r(D), fp32
|
||||
|
||||
ignores:
|
||||
[.float(), +, .softplus, .shape, new_zeros, repeat, stack, to(dtype), silu]
|
||||
"""
|
||||
import numpy as np
|
||||
|
||||
# fvcore.nn.jit_handles
|
||||
def get_flops_einsum(input_shapes, equation):
|
||||
np_arrs = [np.zeros(s) for s in input_shapes]
|
||||
optim = np.einsum_path(equation, *np_arrs, optimize="optimal")[1]
|
||||
for line in optim.split("\n"):
|
||||
if "optimized flop" in line.lower():
|
||||
# divided by 2 because we count MAC (multiply-add counted as one flop)
|
||||
flop = float(np.floor(float(line.split(":")[-1]) / 2))
|
||||
return flop
|
||||
|
||||
assert not with_complex
|
||||
|
||||
flops = 0 # below code flops = 0
|
||||
if False:
|
||||
...
|
||||
"""
|
||||
dtype_in = u.dtype
|
||||
u = u.float()
|
||||
delta = delta.float()
|
||||
if delta_bias is not None:
|
||||
delta = delta + delta_bias[..., None].float()
|
||||
if delta_softplus:
|
||||
delta = F.softplus(delta)
|
||||
batch, dim, dstate = u.shape[0], A.shape[0], A.shape[1]
|
||||
is_variable_B = B.dim() >= 3
|
||||
is_variable_C = C.dim() >= 3
|
||||
if A.is_complex():
|
||||
if is_variable_B:
|
||||
B = torch.view_as_complex(rearrange(B.float(), "... (L two) -> ... L two", two=2))
|
||||
if is_variable_C:
|
||||
C = torch.view_as_complex(rearrange(C.float(), "... (L two) -> ... L two", two=2))
|
||||
else:
|
||||
B = B.float()
|
||||
C = C.float()
|
||||
x = A.new_zeros((batch, dim, dstate))
|
||||
ys = []
|
||||
"""
|
||||
|
||||
flops += get_flops_einsum([[B, D, L], [D, N]], "bdl,dn->bdln")
|
||||
if with_Group:
|
||||
flops += get_flops_einsum([[B, D, L], [B, N, L], [B, D, L]], "bdl,bnl,bdl->bdln")
|
||||
else:
|
||||
flops += get_flops_einsum([[B, D, L], [B, D, N, L], [B, D, L]], "bdl,bdnl,bdl->bdln")
|
||||
if False:
|
||||
...
|
||||
"""
|
||||
deltaA = torch.exp(torch.einsum('bdl,dn->bdln', delta, A))
|
||||
if not is_variable_B:
|
||||
deltaB_u = torch.einsum('bdl,dn,bdl->bdln', delta, B, u)
|
||||
else:
|
||||
if B.dim() == 3:
|
||||
deltaB_u = torch.einsum('bdl,bnl,bdl->bdln', delta, B, u)
|
||||
else:
|
||||
B = repeat(B, "B G N L -> B (G H) N L", H=dim // B.shape[1])
|
||||
deltaB_u = torch.einsum('bdl,bdnl,bdl->bdln', delta, B, u)
|
||||
if is_variable_C and C.dim() == 4:
|
||||
C = repeat(C, "B G N L -> B (G H) N L", H=dim // C.shape[1])
|
||||
last_state = None
|
||||
"""
|
||||
|
||||
in_for_flops = B * D * N
|
||||
if with_Group:
|
||||
in_for_flops += get_flops_einsum([[B, D, N], [B, D, N]], "bdn,bdn->bd")
|
||||
else:
|
||||
in_for_flops += get_flops_einsum([[B, D, N], [B, N]], "bdn,bn->bd")
|
||||
flops += L * in_for_flops
|
||||
if False:
|
||||
...
|
||||
"""
|
||||
for i in range(u.shape[2]):
|
||||
x = deltaA[:, :, i] * x + deltaB_u[:, :, i]
|
||||
if not is_variable_C:
|
||||
y = torch.einsum('bdn,dn->bd', x, C)
|
||||
else:
|
||||
if C.dim() == 3:
|
||||
y = torch.einsum('bdn,bn->bd', x, C[:, :, i])
|
||||
else:
|
||||
y = torch.einsum('bdn,bdn->bd', x, C[:, :, :, i])
|
||||
if i == u.shape[2] - 1:
|
||||
last_state = x
|
||||
if y.is_complex():
|
||||
y = y.real * 2
|
||||
ys.append(y)
|
||||
y = torch.stack(ys, dim=2) # (batch dim L)
|
||||
"""
|
||||
|
||||
if with_D:
|
||||
flops += B * D * L
|
||||
if with_Z:
|
||||
flops += B * D * L
|
||||
if False:
|
||||
...
|
||||
"""
|
||||
out = y if D is None else y + u * rearrange(D, "d -> d 1")
|
||||
if z is not None:
|
||||
out = out * F.silu(z)
|
||||
out = out.to(dtype=dtype_in)
|
||||
"""
|
||||
|
||||
return flops
|
||||
|
||||
|
||||
class PatchEmbed2D(nn.Module):
|
||||
r""" Image to Patch Embedding
|
||||
Args:
|
||||
patch_size (int): Patch token size. Default: 4.
|
||||
in_chans (int): Number of input image channels. Default: 3.
|
||||
embed_dim (int): Number of linear projection output channels. Default: 96.
|
||||
norm_layer (nn.Module, optional): Normalization layer. Default: None
|
||||
"""
|
||||
|
||||
def __init__(self, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None, **kwargs):
|
||||
super().__init__()
|
||||
if isinstance(patch_size, int):
|
||||
patch_size = (patch_size, patch_size)
|
||||
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
||||
if norm_layer is not None:
|
||||
self.norm = norm_layer(embed_dim)
|
||||
else:
|
||||
self.norm = None
|
||||
|
||||
def forward(self, x):
|
||||
x = self.proj(x).permute(0, 2, 3, 1)
|
||||
if self.norm is not None:
|
||||
x = self.norm(x)
|
||||
return x
|
||||
|
||||
|
||||
class PatchMerging2D(nn.Module):
|
||||
r""" Patch Merging Layer.
|
||||
Args:
|
||||
input_resolution (tuple[int]): Resolution of input feature.
|
||||
dim (int): Number of input channels.
|
||||
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
||||
"""
|
||||
|
||||
def __init__(self, dim, norm_layer=nn.LayerNorm):
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
|
||||
self.norm = norm_layer(4 * dim)
|
||||
|
||||
def forward(self, x):
|
||||
B, H, W, C = x.shape
|
||||
|
||||
SHAPE_FIX = [-1, -1]
|
||||
if (W % 2 != 0) or (H % 2 != 0):
|
||||
print(f"Warning, x.shape {x.shape} is not match even ===========", flush=True)
|
||||
SHAPE_FIX[0] = H // 2
|
||||
SHAPE_FIX[1] = W // 2
|
||||
|
||||
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
|
||||
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
|
||||
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
|
||||
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
|
||||
|
||||
if SHAPE_FIX[0] > 0:
|
||||
x0 = x0[:, :SHAPE_FIX[0], :SHAPE_FIX[1], :]
|
||||
x1 = x1[:, :SHAPE_FIX[0], :SHAPE_FIX[1], :]
|
||||
x2 = x2[:, :SHAPE_FIX[0], :SHAPE_FIX[1], :]
|
||||
x3 = x3[:, :SHAPE_FIX[0], :SHAPE_FIX[1], :]
|
||||
|
||||
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
|
||||
x = x.view(B, H // 2, W // 2, 4 * C) # B H/2*W/2 4*C
|
||||
|
||||
x = self.norm(x)
|
||||
x = self.reduction(x)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class PatchExpand2D(nn.Module):
|
||||
def __init__(self, dim, dim_scale=2, norm_layer=nn.LayerNorm):
|
||||
super().__init__()
|
||||
self.dim = dim * 2
|
||||
self.dim_scale = dim_scale
|
||||
self.expand = nn.Linear(self.dim, dim_scale * self.dim, bias=False)
|
||||
self.norm = norm_layer(self.dim // dim_scale)
|
||||
|
||||
def forward(self, x):
|
||||
B, H, W, C = x.shape
|
||||
x = self.expand(x)
|
||||
|
||||
x = rearrange(x, 'b h w (p1 p2 c)-> b (h p1) (w p2) c', p1=self.dim_scale, p2=self.dim_scale,
|
||||
c=C // self.dim_scale)
|
||||
x = self.norm(x)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class Final_PatchExpand2D(nn.Module):
|
||||
def __init__(self, dim, dim_scale=4, norm_layer=nn.LayerNorm):
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
self.dim_scale = dim_scale
|
||||
self.expand = nn.Linear(self.dim, dim_scale * self.dim, bias=False)
|
||||
self.norm = norm_layer(self.dim // dim_scale)
|
||||
|
||||
def forward(self, x):
|
||||
B, H, W, C = x.shape
|
||||
x = self.expand(x)
|
||||
|
||||
x = rearrange(x, 'b h w (p1 p2 c)-> b (h p1) (w p2) c', p1=self.dim_scale, p2=self.dim_scale,
|
||||
c=C // self.dim_scale)
|
||||
x = self.norm(x)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class SS2D(
|
||||
nn.Module): # SS2D(State Space Model 2D)类,它是实现状态空间模型(SSM)在视觉任务中应用的核心部分。这个类将状态空间模型的长程依赖性建模能力与卷积操作结合起来,旨在捕获图像中的长程相互作用,同时保持对局部特征的敏感度。
|
||||
def __init__(
|
||||
self,
|
||||
d_model,
|
||||
d_state=16,
|
||||
# d_state="auto", # 20240109
|
||||
d_conv=3,
|
||||
expand=2,
|
||||
dt_rank="auto",
|
||||
dt_min=0.001,
|
||||
dt_max=0.1,
|
||||
dt_init="random",
|
||||
dt_scale=1.0,
|
||||
dt_init_floor=1e-4,
|
||||
dropout=0.,
|
||||
conv_bias=True,
|
||||
bias=False,
|
||||
device=None,
|
||||
dtype=None,
|
||||
**kwargs,
|
||||
):
|
||||
factory_kwargs = {"device": device, "dtype": dtype}
|
||||
super().__init__()
|
||||
self.d_model = d_model
|
||||
self.d_state = d_state
|
||||
# self.d_state = math.ceil(self.d_model / 6) if d_state == "auto" else d_model # 20240109
|
||||
self.d_conv = d_conv
|
||||
self.expand = expand
|
||||
self.d_inner = int(self.expand * self.d_model)
|
||||
self.dt_rank = math.ceil(self.d_model / 16) if dt_rank == "auto" else dt_rank
|
||||
|
||||
self.in_proj = nn.Linear(self.d_model, self.d_inner * 2, bias=bias, **factory_kwargs)
|
||||
self.conv2d = nn.Conv2d(
|
||||
in_channels=self.d_inner,
|
||||
out_channels=self.d_inner,
|
||||
groups=self.d_inner,
|
||||
bias=conv_bias,
|
||||
kernel_size=d_conv,
|
||||
padding=(d_conv - 1) // 2,
|
||||
**factory_kwargs,
|
||||
)
|
||||
self.act = nn.SiLU()
|
||||
|
||||
self.x_proj = (
|
||||
nn.Linear(self.d_inner, (self.dt_rank + self.d_state * 2), bias=False, **factory_kwargs),
|
||||
nn.Linear(self.d_inner, (self.dt_rank + self.d_state * 2), bias=False, **factory_kwargs),
|
||||
nn.Linear(self.d_inner, (self.dt_rank + self.d_state * 2), bias=False, **factory_kwargs),
|
||||
nn.Linear(self.d_inner, (self.dt_rank + self.d_state * 2), bias=False, **factory_kwargs),
|
||||
)
|
||||
self.x_proj_weight = nn.Parameter(torch.stack([t.weight for t in self.x_proj], dim=0)) # (K=4, N, inner)
|
||||
del self.x_proj
|
||||
|
||||
self.dt_projs = (
|
||||
self.dt_init(self.dt_rank, self.d_inner, dt_scale, dt_init, dt_min, dt_max, dt_init_floor,
|
||||
**factory_kwargs),
|
||||
self.dt_init(self.dt_rank, self.d_inner, dt_scale, dt_init, dt_min, dt_max, dt_init_floor,
|
||||
**factory_kwargs),
|
||||
self.dt_init(self.dt_rank, self.d_inner, dt_scale, dt_init, dt_min, dt_max, dt_init_floor,
|
||||
**factory_kwargs),
|
||||
self.dt_init(self.dt_rank, self.d_inner, dt_scale, dt_init, dt_min, dt_max, dt_init_floor,
|
||||
**factory_kwargs),
|
||||
)
|
||||
self.dt_projs_weight = nn.Parameter(torch.stack([t.weight for t in self.dt_projs], dim=0)) # (K=4, inner, rank)
|
||||
self.dt_projs_bias = nn.Parameter(torch.stack([t.bias for t in self.dt_projs], dim=0)) # (K=4, inner)
|
||||
del self.dt_projs
|
||||
|
||||
self.A_logs = self.A_log_init(self.d_state, self.d_inner, copies=4, merge=True) # (K=4, D, N)
|
||||
self.Ds = self.D_init(self.d_inner, copies=4, merge=True) # (K=4, D, N)
|
||||
|
||||
# self.selective_scan = selective_scan_fn
|
||||
self.forward_core = self.forward_corev0
|
||||
|
||||
self.out_norm = nn.LayerNorm(self.d_inner)
|
||||
self.out_proj = nn.Linear(self.d_inner, self.d_model, bias=bias, **factory_kwargs)
|
||||
self.dropout = nn.Dropout(dropout) if dropout > 0. else None
|
||||
|
||||
@staticmethod
|
||||
def dt_init(dt_rank, d_inner, dt_scale=1.0, dt_init="random", dt_min=0.001, dt_max=0.1, dt_init_floor=1e-4,
|
||||
**factory_kwargs):
|
||||
dt_proj = nn.Linear(dt_rank, d_inner, bias=True, **factory_kwargs)
|
||||
|
||||
# Initialize special dt projection to preserve variance at initialization
|
||||
dt_init_std = dt_rank ** -0.5 * dt_scale
|
||||
if dt_init == "constant":
|
||||
nn.init.constant_(dt_proj.weight, dt_init_std)
|
||||
elif dt_init == "random":
|
||||
nn.init.uniform_(dt_proj.weight, -dt_init_std, dt_init_std)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
# Initialize dt bias so that F.softplus(dt_bias) is between dt_min and dt_max
|
||||
dt = torch.exp(
|
||||
torch.rand(d_inner, **factory_kwargs) * (math.log(dt_max) - math.log(dt_min))
|
||||
+ math.log(dt_min)
|
||||
).clamp(min=dt_init_floor)
|
||||
# Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759
|
||||
inv_dt = dt + torch.log(-torch.expm1(-dt))
|
||||
with torch.no_grad():
|
||||
dt_proj.bias.copy_(inv_dt)
|
||||
# Our initialization would set all Linear.bias to zero, need to mark this one as _no_reinit
|
||||
dt_proj.bias._no_reinit = True
|
||||
|
||||
return dt_proj
|
||||
|
||||
@staticmethod
|
||||
def A_log_init(d_state, d_inner, copies=1, device=None, merge=True):
|
||||
# S4D real initialization
|
||||
A = repeat(
|
||||
torch.arange(1, d_state + 1, dtype=torch.float32, device=device),
|
||||
"n -> d n",
|
||||
d=d_inner,
|
||||
).contiguous()
|
||||
A_log = torch.log(A) # Keep A_log in fp32
|
||||
if copies > 1:
|
||||
A_log = repeat(A_log, "d n -> r d n", r=copies)
|
||||
if merge:
|
||||
A_log = A_log.flatten(0, 1)
|
||||
A_log = nn.Parameter(A_log)
|
||||
A_log._no_weight_decay = True
|
||||
return A_log
|
||||
|
||||
@staticmethod
|
||||
def D_init(d_inner, copies=1, device=None, merge=True):
|
||||
# D "skip" parameter
|
||||
D = torch.ones(d_inner, device=device)
|
||||
if copies > 1:
|
||||
D = repeat(D, "n1 -> r n1", r=copies)
|
||||
if merge:
|
||||
D = D.flatten(0, 1)
|
||||
D = nn.Parameter(D) # Keep in fp32
|
||||
D._no_weight_decay = True
|
||||
return D
|
||||
|
||||
def forward_corev0(self, x: torch.Tensor):
|
||||
self.selective_scan = selective_scan_fn
|
||||
|
||||
B, C, H, W = x.shape
|
||||
L = H * W
|
||||
K = 4
|
||||
|
||||
x_hwwh = torch.stack([x.view(B, -1, L), torch.transpose(x, dim0=2, dim1=3).contiguous().view(B, -1, L)],
|
||||
dim=1).view(B, 2, -1, L)
|
||||
xs = torch.cat([x_hwwh, torch.flip(x_hwwh, dims=[-1])], dim=1) # (b, k, d, l)
|
||||
|
||||
x_dbl = torch.einsum("b k d l, k c d -> b k c l", xs.view(B, K, -1, L), self.x_proj_weight)
|
||||
# x_dbl = x_dbl + self.x_proj_bias.view(1, K, -1, 1)
|
||||
dts, Bs, Cs = torch.split(x_dbl, [self.dt_rank, self.d_state, self.d_state], dim=2)
|
||||
dts = torch.einsum("b k r l, k d r -> b k d l", dts.view(B, K, -1, L), self.dt_projs_weight)
|
||||
# dts = dts + self.dt_projs_bias.view(1, K, -1, 1)
|
||||
|
||||
xs = xs.float().view(B, -1, L) # (b, k * d, l)
|
||||
dts = dts.contiguous().float().view(B, -1, L) # (b, k * d, l)
|
||||
Bs = Bs.float().view(B, K, -1, L) # (b, k, d_state, l)
|
||||
Cs = Cs.float().view(B, K, -1, L) # (b, k, d_state, l)
|
||||
Ds = self.Ds.float().view(-1) # (k * d)
|
||||
As = -torch.exp(self.A_logs.float()).view(-1, self.d_state) # (k * d, d_state)
|
||||
dt_projs_bias = self.dt_projs_bias.float().view(-1) # (k * d)
|
||||
|
||||
out_y = self.selective_scan(
|
||||
xs, dts,
|
||||
As, Bs, Cs, Ds, z=None,
|
||||
delta_bias=dt_projs_bias,
|
||||
delta_softplus=True,
|
||||
return_last_state=False,
|
||||
).view(B, K, -1, L)
|
||||
assert out_y.dtype == torch.float
|
||||
|
||||
inv_y = torch.flip(out_y[:, 2:4], dims=[-1]).view(B, 2, -1, L)
|
||||
wh_y = torch.transpose(out_y[:, 1].view(B, -1, W, H), dim0=2, dim1=3).contiguous().view(B, -1, L)
|
||||
invwh_y = torch.transpose(inv_y[:, 1].view(B, -1, W, H), dim0=2, dim1=3).contiguous().view(B, -1, L)
|
||||
|
||||
return out_y[:, 0], inv_y[:, 0], wh_y, invwh_y
|
||||
|
||||
# an alternative to forward_corev1
|
||||
def forward_corev1(self, x: torch.Tensor):
|
||||
self.selective_scan = selective_scan_fn_v1
|
||||
|
||||
B, C, H, W = x.shape
|
||||
L = H * W
|
||||
K = 4
|
||||
|
||||
x_hwwh = torch.stack([x.view(B, -1, L), torch.transpose(x, dim0=2, dim1=3).contiguous().view(B, -1, L)],
|
||||
dim=1).view(B, 2, -1, L)
|
||||
xs = torch.cat([x_hwwh, torch.flip(x_hwwh, dims=[-1])], dim=1) # (b, k, d, l)
|
||||
|
||||
x_dbl = torch.einsum("b k d l, k c d -> b k c l", xs.view(B, K, -1, L), self.x_proj_weight)
|
||||
# x_dbl = x_dbl + self.x_proj_bias.view(1, K, -1, 1)
|
||||
dts, Bs, Cs = torch.split(x_dbl, [self.dt_rank, self.d_state, self.d_state], dim=2)
|
||||
dts = torch.einsum("b k r l, k d r -> b k d l", dts.view(B, K, -1, L), self.dt_projs_weight)
|
||||
# dts = dts + self.dt_projs_bias.view(1, K, -1, 1)
|
||||
|
||||
xs = xs.float().view(B, -1, L) # (b, k * d, l)
|
||||
dts = dts.contiguous().float().view(B, -1, L) # (b, k * d, l)
|
||||
Bs = Bs.float().view(B, K, -1, L) # (b, k, d_state, l)
|
||||
Cs = Cs.float().view(B, K, -1, L) # (b, k, d_state, l)
|
||||
Ds = self.Ds.float().view(-1) # (k * d)
|
||||
As = -torch.exp(self.A_logs.float()).view(-1, self.d_state) # (k * d, d_state)
|
||||
dt_projs_bias = self.dt_projs_bias.float().view(-1) # (k * d)
|
||||
|
||||
out_y = self.selective_scan(
|
||||
xs, dts,
|
||||
As, Bs, Cs, Ds,
|
||||
delta_bias=dt_projs_bias,
|
||||
delta_softplus=True,
|
||||
).view(B, K, -1, L)
|
||||
assert out_y.dtype == torch.float
|
||||
|
||||
inv_y = torch.flip(out_y[:, 2:4], dims=[-1]).view(B, 2, -1, L)
|
||||
wh_y = torch.transpose(out_y[:, 1].view(B, -1, W, H), dim0=2, dim1=3).contiguous().view(B, -1, L)
|
||||
invwh_y = torch.transpose(inv_y[:, 1].view(B, -1, W, H), dim0=2, dim1=3).contiguous().view(B, -1, L)
|
||||
|
||||
return out_y[:, 0], inv_y[:, 0], wh_y, invwh_y
|
||||
|
||||
def forward(self, x: torch.Tensor, **kwargs):
|
||||
B, H, W, C = x.shape
|
||||
|
||||
xz = self.in_proj(x)
|
||||
x, z = xz.chunk(2, dim=-1) # (b, h, w, d)
|
||||
|
||||
x = x.permute(0, 3, 1, 2).contiguous()
|
||||
x = self.act(self.conv2d(x)) # (b, d, h, w)
|
||||
y1, y2, y3, y4 = self.forward_core(x)
|
||||
assert y1.dtype == torch.float32
|
||||
y = y1 + y2 + y3 + y4
|
||||
y = torch.transpose(y, dim0=1, dim1=2).contiguous().view(B, H, W, -1)
|
||||
y = self.out_norm(y)
|
||||
y = y * F.silu(z)
|
||||
out = self.out_proj(y)
|
||||
if self.dropout is not None:
|
||||
out = self.dropout(out)
|
||||
return out
|
||||
|
||||
|
||||
class ConvSSM(nn.Module):
|
||||
"""
|
||||
这个类组合了自注意力机制和卷积操作,旨在融合自注意力的全局感知能力和卷积的局部特征提取能力。
|
||||
输入特征被分成两部分,一部分通过SS2D自注意力模块处理,另一部分通过一系列卷积层处理。处理后的两部分再次合并,并通过最终的卷积层生成输出特征。
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
hidden_dim: int = 0,
|
||||
drop_path: float = 0,
|
||||
norm_layer: Callable[..., torch.nn.Module] = partial(nn.LayerNorm, eps=1e-6),
|
||||
attn_drop_rate: float = 0,
|
||||
d_state: int = 16,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__()
|
||||
self.ln_1 = norm_layer(hidden_dim // 2)
|
||||
self.self_attention = SS2D(d_model=hidden_dim // 2, dropout=attn_drop_rate, d_state=d_state, **kwargs)
|
||||
self.drop_path = DropPath(drop_path)
|
||||
|
||||
self.conv33conv33conv11 = nn.Sequential(
|
||||
nn.Conv2d(in_channels=hidden_dim // 2, out_channels=hidden_dim // 2, kernel_size=3, stride=1, padding=1),
|
||||
nn.BatchNorm2d(hidden_dim // 2),
|
||||
nn.ReLU(),
|
||||
nn.Conv2d(in_channels=hidden_dim // 2, out_channels=hidden_dim // 2, kernel_size=3, stride=1, padding=1),
|
||||
nn.BatchNorm2d(hidden_dim // 2),
|
||||
nn.ReLU(),
|
||||
nn.Conv2d(in_channels=hidden_dim // 2, out_channels=hidden_dim // 2, kernel_size=1, stride=1)
|
||||
)
|
||||
self.finalconv11 = nn.Conv2d(in_channels=hidden_dim, out_channels=hidden_dim, kernel_size=1, stride=1)
|
||||
|
||||
def forward(self, input: torch.Tensor):
|
||||
input_left, input_right = input.chunk(2, dim=-1)
|
||||
x = input_right + self.drop_path(self.self_attention(self.ln_1(input_right)))
|
||||
input_left = input_left.permute(0, 3, 1, 2).contiguous()
|
||||
input_left = self.conv33conv33conv11(input_left)
|
||||
x = x.permute(0, 3, 1, 2).contiguous()
|
||||
output = torch.cat((input_left, x), dim=1)
|
||||
output = self.finalconv11(output).permute(0, 2, 3, 1).contiguous()
|
||||
return output + input
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
# 初始化ConvSSM模块,hidden_dim为128
|
||||
block = ConvSSM(hidden_dim=128).to(device)
|
||||
|
||||
# 生成随机输入张量,尺寸为[批次大小, 高度, 宽度, 通道数]
|
||||
# 这里批次大小为4,高度和宽度为32,通道数为128(符合hidden_dim的大小)
|
||||
input_tensor = torch.rand(4, 32, 32, 128).to(device)
|
||||
|
||||
# 前向传递输入张量通过ConvSSM模块
|
||||
output = block(input_tensor)
|
||||
|
||||
# 打印输入和输出张量的尺寸
|
||||
print("Input tensor size:", input_tensor.size())
|
||||
print("Output tensor size:", output.size())
|
@ -1,198 +0,0 @@
|
||||
import pywt
|
||||
import pywt.data
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.autograd import Function
|
||||
import torch.nn.functional as F
|
||||
|
||||
"""ECCV2024 https://arxiv.org/abs/2407.05848
|
||||
近年来,人们尝试增加卷积神经网络 (CNN) 的内核大小,以模拟 Vision Transformers (ViTs) 自注意力模块的全局接受场。
|
||||
然而,这种方法在实现全局接受场之前就很快达到上限并饱和。
|
||||
在这项研究中,我们证明了通过利用小波变换 (WT),实际上可以获得非常大的接受场,而不会遭受过度参数化,所提出的层名为 WTConv,
|
||||
可用作现有架构中的直接替换,产生有效的多频响应,并可随接受场的大小优雅地扩展。
|
||||
我们证明了 ConvNeXt 和 MobileNetV2 架构中 WTConv 层对图像分类的有效性,以及下游任务的主干,并表明它具有其他属性,
|
||||
例如对图像损坏的鲁棒性和对纹理形状的响应增强。
|
||||
"""
|
||||
|
||||
|
||||
def create_wavelet_filter(wave, in_size, out_size, type=torch.float):
|
||||
w = pywt.Wavelet(wave)
|
||||
dec_hi = torch.tensor(w.dec_hi[::-1], dtype=type)
|
||||
dec_lo = torch.tensor(w.dec_lo[::-1], dtype=type)
|
||||
dec_filters = torch.stack([dec_lo.unsqueeze(0) * dec_lo.unsqueeze(1),
|
||||
dec_lo.unsqueeze(0) * dec_hi.unsqueeze(1),
|
||||
dec_hi.unsqueeze(0) * dec_lo.unsqueeze(1),
|
||||
dec_hi.unsqueeze(0) * dec_hi.unsqueeze(1)], dim=0)
|
||||
|
||||
dec_filters = dec_filters[:, None].repeat(in_size, 1, 1, 1)
|
||||
|
||||
rec_hi = torch.tensor(w.rec_hi[::-1], dtype=type).flip(dims=[0])
|
||||
rec_lo = torch.tensor(w.rec_lo[::-1], dtype=type).flip(dims=[0])
|
||||
rec_filters = torch.stack([rec_lo.unsqueeze(0) * rec_lo.unsqueeze(1),
|
||||
rec_lo.unsqueeze(0) * rec_hi.unsqueeze(1),
|
||||
rec_hi.unsqueeze(0) * rec_lo.unsqueeze(1),
|
||||
rec_hi.unsqueeze(0) * rec_hi.unsqueeze(1)], dim=0)
|
||||
|
||||
rec_filters = rec_filters[:, None].repeat(out_size, 1, 1, 1)
|
||||
|
||||
return dec_filters, rec_filters
|
||||
|
||||
def wavelet_transform(x, filters):
|
||||
b, c, h, w = x.shape
|
||||
pad = (filters.shape[2] // 2 - 1, filters.shape[3] // 2 - 1)
|
||||
x = F.conv2d(x, filters, stride=2, groups=c, padding=pad)
|
||||
x = x.reshape(b, c, 4, h // 2, w // 2)
|
||||
return x
|
||||
|
||||
|
||||
def inverse_wavelet_transform(x, filters):
|
||||
b, c, _, h_half, w_half = x.shape
|
||||
pad = (filters.shape[2] // 2 - 1, filters.shape[3] // 2 - 1)
|
||||
x = x.reshape(b, c * 4, h_half, w_half)
|
||||
x = F.conv_transpose2d(x, filters, stride=2, groups=c, padding=pad)
|
||||
return x
|
||||
|
||||
|
||||
def wavelet_transform_init(filters):
|
||||
class WaveletTransform(Function):
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, input):
|
||||
with torch.no_grad():
|
||||
x = wavelet_transform(input, filters)
|
||||
return x
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, grad_output):
|
||||
grad = inverse_wavelet_transform(grad_output, filters)
|
||||
return grad, None
|
||||
|
||||
return WaveletTransform().apply
|
||||
|
||||
|
||||
def inverse_wavelet_transform_init(filters):
|
||||
class InverseWaveletTransform(Function):
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, input):
|
||||
with torch.no_grad():
|
||||
x = inverse_wavelet_transform(input, filters)
|
||||
return x
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, grad_output):
|
||||
grad = wavelet_transform(grad_output, filters)
|
||||
return grad, None
|
||||
|
||||
return InverseWaveletTransform().apply
|
||||
|
||||
|
||||
class WTConv2d(nn.Module):
|
||||
def __init__(self, in_channels, out_channels, kernel_size=5, stride=1, bias=True, wt_levels=1, wt_type='db1'):
|
||||
super(WTConv2d, self).__init__()
|
||||
|
||||
assert in_channels == out_channels
|
||||
|
||||
self.in_channels = in_channels
|
||||
self.wt_levels = wt_levels
|
||||
self.stride = stride
|
||||
self.dilation = 1
|
||||
|
||||
self.wt_filter, self.iwt_filter = create_wavelet_filter(wt_type, in_channels, in_channels, torch.float)
|
||||
self.wt_filter = nn.Parameter(self.wt_filter, requires_grad=False)
|
||||
self.iwt_filter = nn.Parameter(self.iwt_filter, requires_grad=False)
|
||||
|
||||
self.wt_function = wavelet_transform_init(self.wt_filter)
|
||||
self.iwt_function = inverse_wavelet_transform_init(self.iwt_filter)
|
||||
|
||||
self.base_conv = nn.Conv2d(in_channels, in_channels, kernel_size, padding='same', stride=1, dilation=1,
|
||||
groups=in_channels, bias=bias)
|
||||
self.base_scale = _ScaleModule([1, in_channels, 1, 1])
|
||||
|
||||
self.wavelet_convs = nn.ModuleList(
|
||||
[nn.Conv2d(in_channels * 4, in_channels * 4, kernel_size, padding='same', stride=1, dilation=1,
|
||||
groups=in_channels * 4, bias=False) for _ in range(self.wt_levels)]
|
||||
)
|
||||
self.wavelet_scale = nn.ModuleList(
|
||||
[_ScaleModule([1, in_channels * 4, 1, 1], init_scale=0.1) for _ in range(self.wt_levels)]
|
||||
)
|
||||
|
||||
if self.stride > 1:
|
||||
self.stride_filter = nn.Parameter(torch.ones(in_channels, 1, 1, 1), requires_grad=False)
|
||||
self.do_stride = lambda x_in: F.conv2d(x_in, self.stride_filter, bias=None, stride=self.stride,
|
||||
groups=in_channels)
|
||||
else:
|
||||
self.do_stride = None
|
||||
|
||||
def forward(self, x):
|
||||
|
||||
x_ll_in_levels = []
|
||||
x_h_in_levels = []
|
||||
shapes_in_levels = []
|
||||
|
||||
curr_x_ll = x
|
||||
|
||||
for i in range(self.wt_levels):
|
||||
curr_shape = curr_x_ll.shape
|
||||
shapes_in_levels.append(curr_shape)
|
||||
if (curr_shape[2] % 2 > 0) or (curr_shape[3] % 2 > 0):
|
||||
curr_pads = (0, curr_shape[3] % 2, 0, curr_shape[2] % 2)
|
||||
curr_x_ll = F.pad(curr_x_ll, curr_pads)
|
||||
|
||||
curr_x = self.wt_function(curr_x_ll)
|
||||
curr_x_ll = curr_x[:, :, 0, :, :]
|
||||
|
||||
shape_x = curr_x.shape
|
||||
curr_x_tag = curr_x.reshape(shape_x[0], shape_x[1] * 4, shape_x[3], shape_x[4])
|
||||
curr_x_tag = self.wavelet_scale[i](self.wavelet_convs[i](curr_x_tag))
|
||||
curr_x_tag = curr_x_tag.reshape(shape_x)
|
||||
|
||||
x_ll_in_levels.append(curr_x_tag[:, :, 0, :, :])
|
||||
x_h_in_levels.append(curr_x_tag[:, :, 1:4, :, :])
|
||||
|
||||
next_x_ll = 0
|
||||
|
||||
for i in range(self.wt_levels - 1, -1, -1):
|
||||
curr_x_ll = x_ll_in_levels.pop()
|
||||
curr_x_h = x_h_in_levels.pop()
|
||||
curr_shape = shapes_in_levels.pop()
|
||||
|
||||
curr_x_ll = curr_x_ll + next_x_ll
|
||||
|
||||
curr_x = torch.cat([curr_x_ll.unsqueeze(2), curr_x_h], dim=2)
|
||||
next_x_ll = self.iwt_function(curr_x)
|
||||
|
||||
next_x_ll = next_x_ll[:, :, :curr_shape[2], :curr_shape[3]]
|
||||
|
||||
x_tag = next_x_ll
|
||||
assert len(x_ll_in_levels) == 0
|
||||
|
||||
x = self.base_scale(self.base_conv(x))
|
||||
x = x + x_tag
|
||||
|
||||
if self.do_stride is not None:
|
||||
x = self.do_stride(x)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class _ScaleModule(nn.Module):
|
||||
def __init__(self, dims, init_scale=1.0, init_bias=0):
|
||||
super(_ScaleModule, self).__init__()
|
||||
self.dims = dims
|
||||
self.weight = nn.Parameter(torch.ones(*dims) * init_scale)
|
||||
self.bias = None
|
||||
|
||||
def forward(self, x):
|
||||
return torch.mul(self.weight, x)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
in_channels = 3
|
||||
out_channels = 3
|
||||
|
||||
block = WTConv2d(in_channels, out_channels)
|
||||
input = torch.rand(1, in_channels, 64, 64)
|
||||
output = block(input)
|
||||
print(input.size())
|
||||
print(output.size())
|
@ -1,25 +0,0 @@
|
||||
/home/star/anaconda3/envs/pfcfuse/bin/python /home/star/whaiDir/PFCFuse/train.py
|
||||
2.4.1+cu121
|
||||
True
|
||||
Model: PFCFuse
|
||||
Number of epochs: 60
|
||||
Epoch gap: 40
|
||||
Learning rate: 0.0001
|
||||
Weight decay: 0
|
||||
Batch size: 1
|
||||
GPU number: 0
|
||||
Coefficient of MSE loss VF: 1.0
|
||||
Coefficient of MSE loss IF: 1.0
|
||||
Coefficient of RMI loss VF: 1.0
|
||||
Coefficient of RMI loss IF: 1.0
|
||||
Coefficient of Cosine loss VF: 1.0
|
||||
Coefficient of Cosine loss IF: 1.0
|
||||
Coefficient of Decomposition loss: 2.0
|
||||
Coefficient of Total Variation loss: 5.0
|
||||
Clip gradient norm value: 0.01
|
||||
Optimization step: 20
|
||||
Optimization gamma: 0.5
|
||||
[Epoch 39/60] [Batch 6486/6487] [loss: 0.002562] ETA: 3:30:05.95/home/star/whaiDir/PFCFuse/utils/loss.py:15: UserWarning: Using a target size (torch.Size([1, 1, 128, 128])) that is different to the input size (torch.Size([])). This will likely lead to incorrect results due to broadcasting. Please ensure they have the same size.
|
||||
loss_rmi=F.l1_loss(x_rmi_max, generate_img)
|
||||
[Epoch 59/60] [Batch 6486/6487] [loss: 2.106119] ETA: 0:00:00.08
|
||||
Process finished with exit code 0
|
38
logs/log_20241008_success.log
Normal file
38
logs/log_20241008_success.log
Normal file
@ -0,0 +1,38 @@
|
||||
|
||||
|
||||
|
||||
/home/star/anaconda3/envs/pfcfuse/bin/python /home/star/whaiDir/PFCFuse/test_IVF.py
|
||||
|
||||
|
||||
================================================================================
|
||||
The test result of TNO :
|
||||
19.png
|
||||
05.png
|
||||
21.png
|
||||
18.png
|
||||
15.png
|
||||
22.png
|
||||
14.png
|
||||
13.png
|
||||
08.png
|
||||
01.png
|
||||
02.png
|
||||
03.png
|
||||
25.png
|
||||
17.png
|
||||
11.png
|
||||
16.png
|
||||
06.png
|
||||
07.png
|
||||
09.png
|
||||
10.png
|
||||
12.png
|
||||
23.png
|
||||
24.png
|
||||
20.png
|
||||
04.png
|
||||
EN SD SF MI SCD VIF Qabf SSIM
|
||||
PFCFuse 7.01 40.4 15.51 1.55 1.75 0.66 0.54 0.96
|
||||
================================================================================
|
||||
|
||||
Process finished with exit code 0
|
45
logs/status.md
Normal file
45
logs/status.md
Normal file
@ -0,0 +1,45 @@
|
||||
PFCFuse
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
20241008
|
||||
```
|
||||
/home/star/anaconda3/envs/pfcfuse/bin/python /home/star/whaiDir/PFCFuse/test_IVF.py
|
||||
|
||||
|
||||
================================================================================
|
||||
The test result of TNO :
|
||||
19.png
|
||||
05.png
|
||||
21.png
|
||||
18.png
|
||||
15.png
|
||||
22.png
|
||||
14.png
|
||||
13.png
|
||||
08.png
|
||||
01.png
|
||||
02.png
|
||||
03.png
|
||||
25.png
|
||||
17.png
|
||||
11.png
|
||||
16.png
|
||||
06.png
|
||||
07.png
|
||||
09.png
|
||||
10.png
|
||||
12.png
|
||||
23.png
|
||||
24.png
|
||||
20.png
|
||||
04.png
|
||||
EN SD SF MI SCD VIF Qabf SSIM
|
||||
PFCFuse 7.01 40.4 15.51 1.55 1.75 0.66 0.54 0.96
|
||||
================================================================================
|
||||
|
||||
Process finished with exit code 0
|
||||
|
||||
```
|
@ -1,5 +0,0 @@
|
||||
# __version__ = "1.2.0.post1"
|
||||
#
|
||||
# from mamba_ssm.ops.selective_scan_interface import selective_scan_fn, mamba_inner_fn
|
||||
# from mamba_ssm.modules.mamba_simple import Mamba
|
||||
# from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel
|
@ -1,15 +0,0 @@
|
||||
from dataclasses import dataclass, field
|
||||
|
||||
|
||||
@dataclass
|
||||
class MambaConfig:
|
||||
|
||||
d_model: int = 2560
|
||||
n_layer: int = 64
|
||||
vocab_size: int = 50277
|
||||
ssm_cfg: dict = field(default_factory=dict)
|
||||
rms_norm: bool = True
|
||||
residual_in_fp32: bool = True
|
||||
fused_add_norm: bool = True
|
||||
pad_vocab_size_multiple: int = 8
|
||||
tie_embeddings: bool = True
|
@ -1,265 +0,0 @@
|
||||
# Copyright (c) 2023, Albert Gu, Tri Dao.
|
||||
|
||||
import math
|
||||
from functools import partial
|
||||
import json
|
||||
import os
|
||||
|
||||
from collections import namedtuple
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from mamba_ssm.models.config_mamba import MambaConfig
|
||||
from mamba_ssm.modules.mamba_simple import Mamba, Block
|
||||
from mamba_ssm.utils.generation import GenerationMixin
|
||||
from mamba_ssm.utils.hf import load_config_hf, load_state_dict_hf
|
||||
|
||||
try:
|
||||
from mamba_ssm.ops.triton.layernorm import RMSNorm, layer_norm_fn, rms_norm_fn
|
||||
except ImportError:
|
||||
RMSNorm, layer_norm_fn, rms_norm_fn = None, None, None
|
||||
|
||||
|
||||
def create_block(
|
||||
d_model,
|
||||
ssm_cfg=None,
|
||||
norm_epsilon=1e-5,
|
||||
rms_norm=False,
|
||||
residual_in_fp32=False,
|
||||
fused_add_norm=False,
|
||||
layer_idx=None,
|
||||
device=None,
|
||||
dtype=None,
|
||||
):
|
||||
if ssm_cfg is None:
|
||||
ssm_cfg = {}
|
||||
factory_kwargs = {"device": device, "dtype": dtype}
|
||||
mixer_cls = partial(Mamba, layer_idx=layer_idx, **ssm_cfg, **factory_kwargs)
|
||||
norm_cls = partial(
|
||||
nn.LayerNorm if not rms_norm else RMSNorm, eps=norm_epsilon, **factory_kwargs
|
||||
)
|
||||
block = Block(
|
||||
d_model,
|
||||
mixer_cls,
|
||||
norm_cls=norm_cls,
|
||||
fused_add_norm=fused_add_norm,
|
||||
residual_in_fp32=residual_in_fp32,
|
||||
)
|
||||
block.layer_idx = layer_idx
|
||||
return block
|
||||
|
||||
|
||||
# https://github.com/huggingface/transformers/blob/c28d04e9e252a1a099944e325685f14d242ecdcd/src/transformers/models/gpt2/modeling_gpt2.py#L454
|
||||
def _init_weights(
|
||||
module,
|
||||
n_layer,
|
||||
initializer_range=0.02, # Now only used for embedding layer.
|
||||
rescale_prenorm_residual=True,
|
||||
n_residuals_per_layer=1, # Change to 2 if we have MLP
|
||||
):
|
||||
if isinstance(module, nn.Linear):
|
||||
if module.bias is not None:
|
||||
if not getattr(module.bias, "_no_reinit", False):
|
||||
nn.init.zeros_(module.bias)
|
||||
elif isinstance(module, nn.Embedding):
|
||||
nn.init.normal_(module.weight, std=initializer_range)
|
||||
|
||||
if rescale_prenorm_residual:
|
||||
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
|
||||
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
|
||||
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
|
||||
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
|
||||
#
|
||||
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
|
||||
for name, p in module.named_parameters():
|
||||
if name in ["out_proj.weight", "fc2.weight"]:
|
||||
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
|
||||
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
|
||||
# We need to reinit p since this code could be called multiple times
|
||||
# Having just p *= scale would repeatedly scale it down
|
||||
nn.init.kaiming_uniform_(p, a=math.sqrt(5))
|
||||
with torch.no_grad():
|
||||
p /= math.sqrt(n_residuals_per_layer * n_layer)
|
||||
|
||||
|
||||
class MixerModel(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
d_model: int,
|
||||
n_layer: int,
|
||||
vocab_size: int,
|
||||
ssm_cfg=None,
|
||||
norm_epsilon: float = 1e-5,
|
||||
rms_norm: bool = False,
|
||||
initializer_cfg=None,
|
||||
fused_add_norm=False,
|
||||
residual_in_fp32=False,
|
||||
device=None,
|
||||
dtype=None,
|
||||
) -> None:
|
||||
factory_kwargs = {"device": device, "dtype": dtype}
|
||||
super().__init__()
|
||||
self.residual_in_fp32 = residual_in_fp32
|
||||
|
||||
self.embedding = nn.Embedding(vocab_size, d_model, **factory_kwargs)
|
||||
|
||||
# We change the order of residual and layer norm:
|
||||
# Instead of LN -> Attn / MLP -> Add, we do:
|
||||
# Add -> LN -> Attn / MLP / Mixer, returning both the residual branch (output of Add) and
|
||||
# the main branch (output of MLP / Mixer). The model definition is unchanged.
|
||||
# This is for performance reason: we can fuse add + layer_norm.
|
||||
self.fused_add_norm = fused_add_norm
|
||||
if self.fused_add_norm:
|
||||
if layer_norm_fn is None or rms_norm_fn is None:
|
||||
raise ImportError("Failed to import Triton LayerNorm / RMSNorm kernels")
|
||||
|
||||
self.layers = nn.ModuleList(
|
||||
[
|
||||
create_block(
|
||||
d_model,
|
||||
ssm_cfg=ssm_cfg,
|
||||
norm_epsilon=norm_epsilon,
|
||||
rms_norm=rms_norm,
|
||||
residual_in_fp32=residual_in_fp32,
|
||||
fused_add_norm=fused_add_norm,
|
||||
layer_idx=i,
|
||||
**factory_kwargs,
|
||||
)
|
||||
for i in range(n_layer)
|
||||
]
|
||||
)
|
||||
|
||||
self.norm_f = (nn.LayerNorm if not rms_norm else RMSNorm)(
|
||||
d_model, eps=norm_epsilon, **factory_kwargs
|
||||
)
|
||||
|
||||
self.apply(
|
||||
partial(
|
||||
_init_weights,
|
||||
n_layer=n_layer,
|
||||
**(initializer_cfg if initializer_cfg is not None else {}),
|
||||
)
|
||||
)
|
||||
|
||||
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
|
||||
return {
|
||||
i: layer.allocate_inference_cache(batch_size, max_seqlen, dtype=dtype, **kwargs)
|
||||
for i, layer in enumerate(self.layers)
|
||||
}
|
||||
|
||||
def forward(self, input_ids, inference_params=None):
|
||||
hidden_states = self.embedding(input_ids)
|
||||
residual = None
|
||||
for layer in self.layers:
|
||||
hidden_states, residual = layer(
|
||||
hidden_states, residual, inference_params=inference_params
|
||||
)
|
||||
if not self.fused_add_norm:
|
||||
residual = (hidden_states + residual) if residual is not None else hidden_states
|
||||
hidden_states = self.norm_f(residual.to(dtype=self.norm_f.weight.dtype))
|
||||
else:
|
||||
# Set prenorm=False here since we don't need the residual
|
||||
fused_add_norm_fn = rms_norm_fn if isinstance(self.norm_f, RMSNorm) else layer_norm_fn
|
||||
hidden_states = fused_add_norm_fn(
|
||||
hidden_states,
|
||||
self.norm_f.weight,
|
||||
self.norm_f.bias,
|
||||
eps=self.norm_f.eps,
|
||||
residual=residual,
|
||||
prenorm=False,
|
||||
residual_in_fp32=self.residual_in_fp32,
|
||||
)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class MambaLMHeadModel(nn.Module, GenerationMixin):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: MambaConfig,
|
||||
initializer_cfg=None,
|
||||
device=None,
|
||||
dtype=None,
|
||||
) -> None:
|
||||
self.config = config
|
||||
d_model = config.d_model
|
||||
n_layer = config.n_layer
|
||||
vocab_size = config.vocab_size
|
||||
ssm_cfg = config.ssm_cfg
|
||||
rms_norm = config.rms_norm
|
||||
residual_in_fp32 = config.residual_in_fp32
|
||||
fused_add_norm = config.fused_add_norm
|
||||
pad_vocab_size_multiple = config.pad_vocab_size_multiple
|
||||
factory_kwargs = {"device": device, "dtype": dtype}
|
||||
|
||||
super().__init__()
|
||||
if vocab_size % pad_vocab_size_multiple != 0:
|
||||
vocab_size += pad_vocab_size_multiple - (vocab_size % pad_vocab_size_multiple)
|
||||
self.backbone = MixerModel(
|
||||
d_model=d_model,
|
||||
n_layer=n_layer,
|
||||
vocab_size=vocab_size,
|
||||
ssm_cfg=ssm_cfg,
|
||||
rms_norm=rms_norm,
|
||||
initializer_cfg=initializer_cfg,
|
||||
fused_add_norm=fused_add_norm,
|
||||
residual_in_fp32=residual_in_fp32,
|
||||
**factory_kwargs,
|
||||
)
|
||||
self.lm_head = nn.Linear(d_model, vocab_size, bias=False, **factory_kwargs)
|
||||
|
||||
# Initialize weights and apply final processing
|
||||
self.apply(
|
||||
partial(
|
||||
_init_weights,
|
||||
n_layer=n_layer,
|
||||
**(initializer_cfg if initializer_cfg is not None else {}),
|
||||
)
|
||||
)
|
||||
self.tie_weights()
|
||||
|
||||
def tie_weights(self):
|
||||
if self.config.tie_embeddings:
|
||||
self.lm_head.weight = self.backbone.embedding.weight
|
||||
|
||||
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
|
||||
return self.backbone.allocate_inference_cache(batch_size, max_seqlen, dtype=dtype, **kwargs)
|
||||
|
||||
def forward(self, input_ids, position_ids=None, inference_params=None, num_last_tokens=0):
|
||||
"""
|
||||
"position_ids" is just to be compatible with Transformer generation. We don't use it.
|
||||
num_last_tokens: if > 0, only return the logits for the last n tokens
|
||||
"""
|
||||
hidden_states = self.backbone(input_ids, inference_params=inference_params)
|
||||
if num_last_tokens > 0:
|
||||
hidden_states = hidden_states[:, -num_last_tokens:]
|
||||
lm_logits = self.lm_head(hidden_states)
|
||||
CausalLMOutput = namedtuple("CausalLMOutput", ["logits"])
|
||||
return CausalLMOutput(logits=lm_logits)
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, pretrained_model_name, device=None, dtype=None, **kwargs):
|
||||
config_data = load_config_hf(pretrained_model_name)
|
||||
config = MambaConfig(**config_data)
|
||||
model = cls(config, device=device, dtype=dtype, **kwargs)
|
||||
model.load_state_dict(load_state_dict_hf(pretrained_model_name, device=device, dtype=dtype))
|
||||
return model
|
||||
|
||||
def save_pretrained(self, save_directory):
|
||||
"""
|
||||
Minimal implementation of save_pretrained for MambaLMHeadModel.
|
||||
Save the model and its configuration file to a directory.
|
||||
"""
|
||||
# Ensure save_directory exists
|
||||
if not os.path.exists(save_directory):
|
||||
os.makedirs(save_directory)
|
||||
|
||||
# Save the model's state_dict
|
||||
model_path = os.path.join(save_directory, 'pytorch_model.bin')
|
||||
torch.save(self.state_dict(), model_path)
|
||||
|
||||
# Save the configuration of the model
|
||||
config_path = os.path.join(save_directory, 'config.json')
|
||||
with open(config_path, 'w') as f:
|
||||
json.dump(self.config.__dict__, f)
|
@ -1,353 +0,0 @@
|
||||
# Copyright (c) 2023, Tri Dao, Albert Gu.
|
||||
|
||||
import math
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch import Tensor
|
||||
|
||||
from einops import rearrange, repeat
|
||||
|
||||
from mamba_ssm.ops.selective_scan_interface import selective_scan_fn, mamba_inner_fn
|
||||
|
||||
try:
|
||||
from causal_conv1d import causal_conv1d_fn, causal_conv1d_update
|
||||
except ImportError:
|
||||
causal_conv1d_fn, causal_conv1d_update = None, None
|
||||
|
||||
try:
|
||||
from mamba_ssm.ops.triton.selective_state_update import selective_state_update
|
||||
except ImportError:
|
||||
selective_state_update = None
|
||||
|
||||
try:
|
||||
from mamba_ssm.ops.triton.layernorm import RMSNorm, layer_norm_fn, rms_norm_fn
|
||||
except ImportError:
|
||||
RMSNorm, layer_norm_fn, rms_norm_fn = None, None, None
|
||||
|
||||
|
||||
class Mamba(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
d_model,
|
||||
d_state=16,
|
||||
d_conv=4,
|
||||
expand=2,
|
||||
dt_rank="auto",
|
||||
dt_min=0.001,
|
||||
dt_max=0.1,
|
||||
dt_init="random",
|
||||
dt_scale=1.0,
|
||||
dt_init_floor=1e-4,
|
||||
conv_bias=True,
|
||||
bias=False,
|
||||
use_fast_path=True, # Fused kernel options
|
||||
layer_idx=None,
|
||||
device=None,
|
||||
dtype=None,
|
||||
):
|
||||
factory_kwargs = {"device": device, "dtype": dtype}
|
||||
super().__init__()
|
||||
self.d_model = d_model
|
||||
self.d_state = d_state
|
||||
self.d_conv = d_conv
|
||||
self.expand = expand
|
||||
self.d_inner = int(self.expand * self.d_model)
|
||||
self.dt_rank = math.ceil(self.d_model / 16) if dt_rank == "auto" else dt_rank
|
||||
self.use_fast_path = use_fast_path
|
||||
self.layer_idx = layer_idx
|
||||
|
||||
self.in_proj = nn.Linear(self.d_model, self.d_inner * 2, bias=bias, **factory_kwargs)
|
||||
|
||||
self.conv1d = nn.Conv1d(
|
||||
in_channels=self.d_inner,
|
||||
out_channels=self.d_inner,
|
||||
bias=conv_bias,
|
||||
kernel_size=d_conv,
|
||||
groups=self.d_inner,
|
||||
padding=d_conv - 1,
|
||||
**factory_kwargs,
|
||||
)
|
||||
|
||||
self.activation = "silu"
|
||||
self.act = nn.SiLU()
|
||||
|
||||
self.x_proj = nn.Linear(
|
||||
self.d_inner, self.dt_rank + self.d_state * 2, bias=False, **factory_kwargs
|
||||
)
|
||||
self.dt_proj = nn.Linear(self.dt_rank, self.d_inner, bias=True, **factory_kwargs)
|
||||
|
||||
# Initialize special dt projection to preserve variance at initialization
|
||||
dt_init_std = self.dt_rank**-0.5 * dt_scale
|
||||
if dt_init == "constant":
|
||||
nn.init.constant_(self.dt_proj.weight, dt_init_std)
|
||||
elif dt_init == "random":
|
||||
nn.init.uniform_(self.dt_proj.weight, -dt_init_std, dt_init_std)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
# Initialize dt bias so that F.softplus(dt_bias) is between dt_min and dt_max
|
||||
dt = torch.exp(
|
||||
torch.rand(self.d_inner, **factory_kwargs) * (math.log(dt_max) - math.log(dt_min))
|
||||
+ math.log(dt_min)
|
||||
).clamp(min=dt_init_floor)
|
||||
# Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759
|
||||
inv_dt = dt + torch.log(-torch.expm1(-dt))
|
||||
with torch.no_grad():
|
||||
self.dt_proj.bias.copy_(inv_dt)
|
||||
# Our initialization would set all Linear.bias to zero, need to mark this one as _no_reinit
|
||||
self.dt_proj.bias._no_reinit = True
|
||||
|
||||
# S4D real initialization
|
||||
A = repeat(
|
||||
torch.arange(1, self.d_state + 1, dtype=torch.float32, device=device),
|
||||
"n -> d n",
|
||||
d=self.d_inner,
|
||||
).contiguous()
|
||||
A_log = torch.log(A) # Keep A_log in fp32
|
||||
self.A_log = nn.Parameter(A_log)
|
||||
self.A_log._no_weight_decay = True
|
||||
|
||||
# D "skip" parameter
|
||||
self.D = nn.Parameter(torch.ones(self.d_inner, device=device)) # Keep in fp32
|
||||
self.D._no_weight_decay = True
|
||||
|
||||
self.out_proj = nn.Linear(self.d_inner, self.d_model, bias=bias, **factory_kwargs)
|
||||
|
||||
def forward(self, hidden_states, inference_params=None):
|
||||
"""
|
||||
hidden_states: (B, L, D)
|
||||
Returns: same shape as hidden_states
|
||||
"""
|
||||
batch, seqlen, dim = hidden_states.shape
|
||||
|
||||
conv_state, ssm_state = None, None
|
||||
if inference_params is not None:
|
||||
conv_state, ssm_state = self._get_states_from_cache(inference_params, batch)
|
||||
if inference_params.seqlen_offset > 0:
|
||||
# The states are updated inplace
|
||||
out, _, _ = self.step(hidden_states, conv_state, ssm_state)
|
||||
return out
|
||||
|
||||
# We do matmul and transpose BLH -> HBL at the same time
|
||||
xz = rearrange(
|
||||
self.in_proj.weight @ rearrange(hidden_states, "b l d -> d (b l)"),
|
||||
"d (b l) -> b d l",
|
||||
l=seqlen,
|
||||
)
|
||||
if self.in_proj.bias is not None:
|
||||
xz = xz + rearrange(self.in_proj.bias.to(dtype=xz.dtype), "d -> d 1")
|
||||
|
||||
A = -torch.exp(self.A_log.float()) # (d_inner, d_state)
|
||||
# In the backward pass we write dx and dz next to each other to avoid torch.cat
|
||||
if self.use_fast_path and causal_conv1d_fn is not None and inference_params is None: # Doesn't support outputting the states
|
||||
out = mamba_inner_fn(
|
||||
xz,
|
||||
self.conv1d.weight,
|
||||
self.conv1d.bias,
|
||||
self.x_proj.weight,
|
||||
self.dt_proj.weight,
|
||||
self.out_proj.weight,
|
||||
self.out_proj.bias,
|
||||
A,
|
||||
None, # input-dependent B
|
||||
None, # input-dependent C
|
||||
self.D.float(),
|
||||
delta_bias=self.dt_proj.bias.float(),
|
||||
delta_softplus=True,
|
||||
)
|
||||
else:
|
||||
x, z = xz.chunk(2, dim=1)
|
||||
# Compute short convolution
|
||||
if conv_state is not None:
|
||||
# If we just take x[:, :, -self.d_conv :], it will error if seqlen < self.d_conv
|
||||
# Instead F.pad will pad with zeros if seqlen < self.d_conv, and truncate otherwise.
|
||||
conv_state.copy_(F.pad(x, (self.d_conv - x.shape[-1], 0))) # Update state (B D W)
|
||||
if causal_conv1d_fn is None:
|
||||
x = self.act(self.conv1d(x)[..., :seqlen])
|
||||
else:
|
||||
assert self.activation in ["silu", "swish"]
|
||||
x = causal_conv1d_fn(
|
||||
x=x,
|
||||
weight=rearrange(self.conv1d.weight, "d 1 w -> d w"),
|
||||
bias=self.conv1d.bias,
|
||||
activation=self.activation,
|
||||
)
|
||||
|
||||
# We're careful here about the layout, to avoid extra transposes.
|
||||
# We want dt to have d as the slowest moving dimension
|
||||
# and L as the fastest moving dimension, since those are what the ssm_scan kernel expects.
|
||||
x_dbl = self.x_proj(rearrange(x, "b d l -> (b l) d")) # (bl d)
|
||||
dt, B, C = torch.split(x_dbl, [self.dt_rank, self.d_state, self.d_state], dim=-1)
|
||||
dt = self.dt_proj.weight @ dt.t()
|
||||
dt = rearrange(dt, "d (b l) -> b d l", l=seqlen)
|
||||
B = rearrange(B, "(b l) dstate -> b dstate l", l=seqlen).contiguous()
|
||||
C = rearrange(C, "(b l) dstate -> b dstate l", l=seqlen).contiguous()
|
||||
assert self.activation in ["silu", "swish"]
|
||||
y = selective_scan_fn(
|
||||
x,
|
||||
dt,
|
||||
A,
|
||||
B,
|
||||
C,
|
||||
self.D.float(),
|
||||
z=z,
|
||||
delta_bias=self.dt_proj.bias.float(),
|
||||
delta_softplus=True,
|
||||
return_last_state=ssm_state is not None,
|
||||
)
|
||||
if ssm_state is not None:
|
||||
y, last_state = y
|
||||
ssm_state.copy_(last_state)
|
||||
y = rearrange(y, "b d l -> b l d")
|
||||
out = self.out_proj(y)
|
||||
return out
|
||||
|
||||
def step(self, hidden_states, conv_state, ssm_state):
|
||||
dtype = hidden_states.dtype
|
||||
assert hidden_states.shape[1] == 1, "Only support decoding with 1 token at a time for now"
|
||||
xz = self.in_proj(hidden_states.squeeze(1)) # (B 2D)
|
||||
x, z = xz.chunk(2, dim=-1) # (B D)
|
||||
|
||||
# Conv step
|
||||
if causal_conv1d_update is None:
|
||||
conv_state.copy_(torch.roll(conv_state, shifts=-1, dims=-1)) # Update state (B D W)
|
||||
conv_state[:, :, -1] = x
|
||||
x = torch.sum(conv_state * rearrange(self.conv1d.weight, "d 1 w -> d w"), dim=-1) # (B D)
|
||||
if self.conv1d.bias is not None:
|
||||
x = x + self.conv1d.bias
|
||||
x = self.act(x).to(dtype=dtype)
|
||||
else:
|
||||
x = causal_conv1d_update(
|
||||
x,
|
||||
conv_state,
|
||||
rearrange(self.conv1d.weight, "d 1 w -> d w"),
|
||||
self.conv1d.bias,
|
||||
self.activation,
|
||||
)
|
||||
|
||||
x_db = self.x_proj(x) # (B dt_rank+2*d_state)
|
||||
dt, B, C = torch.split(x_db, [self.dt_rank, self.d_state, self.d_state], dim=-1)
|
||||
# Don't add dt_bias here
|
||||
dt = F.linear(dt, self.dt_proj.weight) # (B d_inner)
|
||||
A = -torch.exp(self.A_log.float()) # (d_inner, d_state)
|
||||
|
||||
# SSM step
|
||||
if selective_state_update is None:
|
||||
# Discretize A and B
|
||||
dt = F.softplus(dt + self.dt_proj.bias.to(dtype=dt.dtype))
|
||||
dA = torch.exp(torch.einsum("bd,dn->bdn", dt, A))
|
||||
dB = torch.einsum("bd,bn->bdn", dt, B)
|
||||
ssm_state.copy_(ssm_state * dA + rearrange(x, "b d -> b d 1") * dB)
|
||||
y = torch.einsum("bdn,bn->bd", ssm_state.to(dtype), C)
|
||||
y = y + self.D.to(dtype) * x
|
||||
y = y * self.act(z) # (B D)
|
||||
else:
|
||||
y = selective_state_update(
|
||||
ssm_state, x, dt, A, B, C, self.D, z=z, dt_bias=self.dt_proj.bias, dt_softplus=True
|
||||
)
|
||||
|
||||
out = self.out_proj(y)
|
||||
return out.unsqueeze(1), conv_state, ssm_state
|
||||
|
||||
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
|
||||
device = self.out_proj.weight.device
|
||||
conv_dtype = self.conv1d.weight.dtype if dtype is None else dtype
|
||||
conv_state = torch.zeros(
|
||||
batch_size, self.d_model * self.expand, self.d_conv, device=device, dtype=conv_dtype
|
||||
)
|
||||
ssm_dtype = self.dt_proj.weight.dtype if dtype is None else dtype
|
||||
# ssm_dtype = torch.float32
|
||||
ssm_state = torch.zeros(
|
||||
batch_size, self.d_model * self.expand, self.d_state, device=device, dtype=ssm_dtype
|
||||
)
|
||||
return conv_state, ssm_state
|
||||
|
||||
def _get_states_from_cache(self, inference_params, batch_size, initialize_states=False):
|
||||
assert self.layer_idx is not None
|
||||
if self.layer_idx not in inference_params.key_value_memory_dict:
|
||||
batch_shape = (batch_size,)
|
||||
conv_state = torch.zeros(
|
||||
batch_size,
|
||||
self.d_model * self.expand,
|
||||
self.d_conv,
|
||||
device=self.conv1d.weight.device,
|
||||
dtype=self.conv1d.weight.dtype,
|
||||
)
|
||||
ssm_state = torch.zeros(
|
||||
batch_size,
|
||||
self.d_model * self.expand,
|
||||
self.d_state,
|
||||
device=self.dt_proj.weight.device,
|
||||
dtype=self.dt_proj.weight.dtype,
|
||||
# dtype=torch.float32,
|
||||
)
|
||||
inference_params.key_value_memory_dict[self.layer_idx] = (conv_state, ssm_state)
|
||||
else:
|
||||
conv_state, ssm_state = inference_params.key_value_memory_dict[self.layer_idx]
|
||||
# TODO: What if batch size changes between generation, and we reuse the same states?
|
||||
if initialize_states:
|
||||
conv_state.zero_()
|
||||
ssm_state.zero_()
|
||||
return conv_state, ssm_state
|
||||
|
||||
|
||||
class Block(nn.Module):
|
||||
def __init__(
|
||||
self, dim, mixer_cls, norm_cls=nn.LayerNorm, fused_add_norm=False, residual_in_fp32=False
|
||||
):
|
||||
"""
|
||||
Simple block wrapping a mixer class with LayerNorm/RMSNorm and residual connection"
|
||||
|
||||
This Block has a slightly different structure compared to a regular
|
||||
prenorm Transformer block.
|
||||
The standard block is: LN -> MHA/MLP -> Add.
|
||||
[Ref: https://arxiv.org/abs/2002.04745]
|
||||
Here we have: Add -> LN -> Mixer, returning both
|
||||
the hidden_states (output of the mixer) and the residual.
|
||||
This is purely for performance reasons, as we can fuse add and LayerNorm.
|
||||
The residual needs to be provided (except for the very first block).
|
||||
"""
|
||||
super().__init__()
|
||||
self.residual_in_fp32 = residual_in_fp32
|
||||
self.fused_add_norm = fused_add_norm
|
||||
self.mixer = mixer_cls(dim)
|
||||
self.norm = norm_cls(dim)
|
||||
if self.fused_add_norm:
|
||||
assert RMSNorm is not None, "RMSNorm import fails"
|
||||
assert isinstance(
|
||||
self.norm, (nn.LayerNorm, RMSNorm)
|
||||
), "Only LayerNorm and RMSNorm are supported for fused_add_norm"
|
||||
|
||||
def forward(
|
||||
self, hidden_states: Tensor, residual: Optional[Tensor] = None, inference_params=None
|
||||
):
|
||||
r"""Pass the input through the encoder layer.
|
||||
|
||||
Args:
|
||||
hidden_states: the sequence to the encoder layer (required).
|
||||
residual: hidden_states = Mixer(LN(residual))
|
||||
"""
|
||||
if not self.fused_add_norm:
|
||||
residual = (hidden_states + residual) if residual is not None else hidden_states
|
||||
hidden_states = self.norm(residual.to(dtype=self.norm.weight.dtype))
|
||||
if self.residual_in_fp32:
|
||||
residual = residual.to(torch.float32)
|
||||
else:
|
||||
fused_add_norm_fn = rms_norm_fn if isinstance(self.norm, RMSNorm) else layer_norm_fn
|
||||
hidden_states, residual = fused_add_norm_fn(
|
||||
hidden_states,
|
||||
self.norm.weight,
|
||||
self.norm.bias,
|
||||
residual=residual,
|
||||
prenorm=True,
|
||||
residual_in_fp32=self.residual_in_fp32,
|
||||
eps=self.norm.eps,
|
||||
)
|
||||
hidden_states = self.mixer(hidden_states, inference_params=inference_params)
|
||||
return hidden_states, residual
|
||||
|
||||
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
|
||||
return self.mixer.allocate_inference_cache(batch_size, max_seqlen, dtype=dtype, **kwargs)
|
@ -1,372 +0,0 @@
|
||||
# Copyright (c) 2023, Tri Dao, Albert Gu.
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch.cuda.amp import custom_bwd, custom_fwd
|
||||
|
||||
from einops import rearrange, repeat
|
||||
|
||||
try:
|
||||
from causal_conv1d import causal_conv1d_fn
|
||||
import causal_conv1d_cuda
|
||||
except ImportError:
|
||||
causal_conv1d_fn = None
|
||||
causal_conv1d_cuda = None
|
||||
|
||||
# import selective_scan_cuda
|
||||
|
||||
|
||||
class SelectiveScanFn(torch.autograd.Function):
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, u, delta, A, B, C, D=None, z=None, delta_bias=None, delta_softplus=False,
|
||||
return_last_state=False):
|
||||
if u.stride(-1) != 1:
|
||||
u = u.contiguous()
|
||||
if delta.stride(-1) != 1:
|
||||
delta = delta.contiguous()
|
||||
if D is not None:
|
||||
D = D.contiguous()
|
||||
if B.stride(-1) != 1:
|
||||
B = B.contiguous()
|
||||
if C.stride(-1) != 1:
|
||||
C = C.contiguous()
|
||||
if z is not None and z.stride(-1) != 1:
|
||||
z = z.contiguous()
|
||||
if B.dim() == 3:
|
||||
B = rearrange(B, "b dstate l -> b 1 dstate l")
|
||||
ctx.squeeze_B = True
|
||||
if C.dim() == 3:
|
||||
C = rearrange(C, "b dstate l -> b 1 dstate l")
|
||||
ctx.squeeze_C = True
|
||||
out, x, *rest = selective_scan_cuda.fwd(u, delta, A, B, C, D, z, delta_bias, delta_softplus)
|
||||
ctx.delta_softplus = delta_softplus
|
||||
ctx.has_z = z is not None
|
||||
last_state = x[:, :, -1, 1::2] # (batch, dim, dstate)
|
||||
if not ctx.has_z:
|
||||
ctx.save_for_backward(u, delta, A, B, C, D, delta_bias, x)
|
||||
return out if not return_last_state else (out, last_state)
|
||||
else:
|
||||
ctx.save_for_backward(u, delta, A, B, C, D, z, delta_bias, x, out)
|
||||
out_z = rest[0]
|
||||
return out_z if not return_last_state else (out_z, last_state)
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, dout, *args):
|
||||
if not ctx.has_z:
|
||||
u, delta, A, B, C, D, delta_bias, x = ctx.saved_tensors
|
||||
z = None
|
||||
out = None
|
||||
else:
|
||||
u, delta, A, B, C, D, z, delta_bias, x, out = ctx.saved_tensors
|
||||
if dout.stride(-1) != 1:
|
||||
dout = dout.contiguous()
|
||||
# The kernel supports passing in a pre-allocated dz (e.g., in case we want to fuse the
|
||||
# backward of selective_scan_cuda with the backward of chunk).
|
||||
# Here we just pass in None and dz will be allocated in the C++ code.
|
||||
du, ddelta, dA, dB, dC, dD, ddelta_bias, *rest = selective_scan_cuda.bwd(
|
||||
u, delta, A, B, C, D, z, delta_bias, dout, x, out, None, ctx.delta_softplus,
|
||||
False # option to recompute out_z, not used here
|
||||
)
|
||||
dz = rest[0] if ctx.has_z else None
|
||||
dB = dB.squeeze(1) if getattr(ctx, "squeeze_B", False) else dB
|
||||
dC = dC.squeeze(1) if getattr(ctx, "squeeze_C", False) else dC
|
||||
return (du, ddelta, dA, dB, dC,
|
||||
dD if D is not None else None,
|
||||
dz,
|
||||
ddelta_bias if delta_bias is not None else None,
|
||||
None,
|
||||
None)
|
||||
|
||||
|
||||
# def selective_scan_fn(u, delta, A, B, C, D=None, z=None, delta_bias=None, delta_softplus=False,
|
||||
# return_last_state=False):
|
||||
# """if return_last_state is True, returns (out, last_state)
|
||||
# last_state has shape (batch, dim, dstate). Note that the gradient of the last state is
|
||||
# not considered in the backward pass.
|
||||
# """
|
||||
# return SelectiveScanFn.apply(u, delta, A, B, C, D, z, delta_bias, delta_softplus, return_last_state)
|
||||
|
||||
def selective_scan_fn(u, delta, A, B, C, D=None, z=None, delta_bias=None, delta_softplus=False,
|
||||
return_last_state=False):
|
||||
"""if return_last_state is True, returns (out, last_state)
|
||||
last_state has shape (batch, dim, dstate). Note that the gradient of the last state is
|
||||
not considered in the backward pass.
|
||||
"""
|
||||
return selective_scan_ref(u, delta, A, B, C, D, z, delta_bias, delta_softplus, return_last_state)
|
||||
|
||||
def selective_scan_ref(u, delta, A, B, C, D=None, z=None, delta_bias=None, delta_softplus=False,
|
||||
return_last_state=False):
|
||||
"""
|
||||
u: r(B D L)
|
||||
delta: r(B D L)
|
||||
A: c(D N) or r(D N)
|
||||
B: c(D N) or r(B N L) or r(B N 2L) or r(B G N L) or (B G N L)
|
||||
C: c(D N) or r(B N L) or r(B N 2L) or r(B G N L) or (B G N L)
|
||||
D: r(D)
|
||||
z: r(B D L)
|
||||
delta_bias: r(D), fp32
|
||||
|
||||
out: r(B D L)
|
||||
last_state (optional): r(B D dstate) or c(B D dstate)
|
||||
"""
|
||||
dtype_in = u.dtype
|
||||
u = u.float()
|
||||
delta = delta.float()
|
||||
if delta_bias is not None:
|
||||
delta = delta + delta_bias[..., None].float()
|
||||
if delta_softplus:
|
||||
delta = F.softplus(delta)
|
||||
batch, dim, dstate = u.shape[0], A.shape[0], A.shape[1]
|
||||
is_variable_B = B.dim() >= 3
|
||||
is_variable_C = C.dim() >= 3
|
||||
if A.is_complex():
|
||||
if is_variable_B:
|
||||
B = torch.view_as_complex(rearrange(B.float(), "... (L two) -> ... L two", two=2))
|
||||
if is_variable_C:
|
||||
C = torch.view_as_complex(rearrange(C.float(), "... (L two) -> ... L two", two=2))
|
||||
else:
|
||||
B = B.float()
|
||||
C = C.float()
|
||||
x = A.new_zeros((batch, dim, dstate))
|
||||
ys = []
|
||||
deltaA = torch.exp(torch.einsum('bdl,dn->bdln', delta, A))
|
||||
if not is_variable_B:
|
||||
deltaB_u = torch.einsum('bdl,dn,bdl->bdln', delta, B, u)
|
||||
else:
|
||||
if B.dim() == 3:
|
||||
deltaB_u = torch.einsum('bdl,bnl,bdl->bdln', delta, B, u)
|
||||
else:
|
||||
B = repeat(B, "B G N L -> B (G H) N L", H=dim // B.shape[1])
|
||||
deltaB_u = torch.einsum('bdl,bdnl,bdl->bdln', delta, B, u)
|
||||
if is_variable_C and C.dim() == 4:
|
||||
C = repeat(C, "B G N L -> B (G H) N L", H=dim // C.shape[1])
|
||||
last_state = None
|
||||
for i in range(u.shape[2]):
|
||||
x = deltaA[:, :, i] * x + deltaB_u[:, :, i]
|
||||
if not is_variable_C:
|
||||
y = torch.einsum('bdn,dn->bd', x, C)
|
||||
else:
|
||||
if C.dim() == 3:
|
||||
y = torch.einsum('bdn,bn->bd', x, C[:, :, i])
|
||||
else:
|
||||
y = torch.einsum('bdn,bdn->bd', x, C[:, :, :, i])
|
||||
if i == u.shape[2] - 1:
|
||||
last_state = x
|
||||
if y.is_complex():
|
||||
y = y.real * 2
|
||||
ys.append(y)
|
||||
y = torch.stack(ys, dim=2) # (batch dim L)
|
||||
out = y if D is None else y + u * rearrange(D, "d -> d 1")
|
||||
if z is not None:
|
||||
out = out * F.silu(z)
|
||||
out = out.to(dtype=dtype_in)
|
||||
return out if not return_last_state else (out, last_state)
|
||||
|
||||
|
||||
class MambaInnerFn(torch.autograd.Function):
|
||||
|
||||
@staticmethod
|
||||
@custom_fwd
|
||||
def forward(ctx, xz, conv1d_weight, conv1d_bias, x_proj_weight, delta_proj_weight,
|
||||
out_proj_weight, out_proj_bias,
|
||||
A, B=None, C=None, D=None, delta_bias=None, B_proj_bias=None,
|
||||
C_proj_bias=None, delta_softplus=True, checkpoint_lvl=1):
|
||||
"""
|
||||
xz: (batch, dim, seqlen)
|
||||
"""
|
||||
assert causal_conv1d_cuda is not None, "causal_conv1d_cuda is not available. Please install causal-conv1d."
|
||||
assert checkpoint_lvl in [0, 1]
|
||||
L = xz.shape[-1]
|
||||
delta_rank = delta_proj_weight.shape[1]
|
||||
d_state = A.shape[-1] * (1 if not A.is_complex() else 2)
|
||||
if torch.is_autocast_enabled():
|
||||
x_proj_weight = x_proj_weight.to(dtype=torch.get_autocast_gpu_dtype())
|
||||
delta_proj_weight = delta_proj_weight.to(dtype=torch.get_autocast_gpu_dtype())
|
||||
out_proj_weight = out_proj_weight.to(dtype=torch.get_autocast_gpu_dtype())
|
||||
out_proj_bias = (out_proj_bias.to(dtype=torch.get_autocast_gpu_dtype())
|
||||
if out_proj_bias is not None else None)
|
||||
if xz.stride(-1) != 1:
|
||||
xz = xz.contiguous()
|
||||
conv1d_weight = rearrange(conv1d_weight, "d 1 w -> d w")
|
||||
x, z = xz.chunk(2, dim=1)
|
||||
conv1d_bias = conv1d_bias.contiguous() if conv1d_bias is not None else None
|
||||
conv1d_out = causal_conv1d_cuda.causal_conv1d_fwd(
|
||||
x, conv1d_weight, conv1d_bias, None, None, None, True
|
||||
)
|
||||
# We're being very careful here about the layout, to avoid extra transposes.
|
||||
# We want delta to have d as the slowest moving dimension
|
||||
# and L as the fastest moving dimension, since those are what the ssm_scan kernel expects.
|
||||
x_dbl = F.linear(rearrange(conv1d_out, 'b d l -> (b l) d'), x_proj_weight) # (bl d)
|
||||
delta = rearrange(delta_proj_weight @ x_dbl[:, :delta_rank].t(), "d (b l) -> b d l", l = L)
|
||||
ctx.is_variable_B = B is None
|
||||
ctx.is_variable_C = C is None
|
||||
ctx.B_proj_bias_is_None = B_proj_bias is None
|
||||
ctx.C_proj_bias_is_None = C_proj_bias is None
|
||||
if B is None: # variable B
|
||||
B = x_dbl[:, delta_rank:delta_rank + d_state] # (bl dstate)
|
||||
if B_proj_bias is not None:
|
||||
B = B + B_proj_bias.to(dtype=B.dtype)
|
||||
if not A.is_complex():
|
||||
# B = rearrange(B, "(b l) dstate -> b dstate l", l=L).contiguous()
|
||||
B = rearrange(B, "(b l) dstate -> b 1 dstate l", l=L).contiguous()
|
||||
else:
|
||||
B = rearrange(B, "(b l) (dstate two) -> b 1 dstate (l two)", l=L, two=2).contiguous()
|
||||
else:
|
||||
if B.stride(-1) != 1:
|
||||
B = B.contiguous()
|
||||
if C is None: # variable C
|
||||
C = x_dbl[:, -d_state:] # (bl dstate)
|
||||
if C_proj_bias is not None:
|
||||
C = C + C_proj_bias.to(dtype=C.dtype)
|
||||
if not A.is_complex():
|
||||
# C = rearrange(C, "(b l) dstate -> b dstate l", l=L).contiguous()
|
||||
C = rearrange(C, "(b l) dstate -> b 1 dstate l", l=L).contiguous()
|
||||
else:
|
||||
C = rearrange(C, "(b l) (dstate two) -> b 1 dstate (l two)", l=L, two=2).contiguous()
|
||||
else:
|
||||
if C.stride(-1) != 1:
|
||||
C = C.contiguous()
|
||||
if D is not None:
|
||||
D = D.contiguous()
|
||||
out, scan_intermediates, out_z = selective_scan_cuda.fwd(
|
||||
conv1d_out, delta, A, B, C, D, z, delta_bias, delta_softplus
|
||||
)
|
||||
ctx.delta_softplus = delta_softplus
|
||||
ctx.out_proj_bias_is_None = out_proj_bias is None
|
||||
ctx.checkpoint_lvl = checkpoint_lvl
|
||||
if checkpoint_lvl >= 1: # Will recompute conv1d_out and delta in the backward pass
|
||||
conv1d_out, delta = None, None
|
||||
ctx.save_for_backward(xz, conv1d_weight, conv1d_bias, x_dbl, x_proj_weight,
|
||||
delta_proj_weight, out_proj_weight, conv1d_out, delta,
|
||||
A, B, C, D, delta_bias, scan_intermediates, out)
|
||||
return F.linear(rearrange(out_z, "b d l -> b l d"), out_proj_weight, out_proj_bias)
|
||||
|
||||
@staticmethod
|
||||
@custom_bwd
|
||||
def backward(ctx, dout):
|
||||
# dout: (batch, seqlen, dim)
|
||||
assert causal_conv1d_cuda is not None, "causal_conv1d_cuda is not available. Please install causal-conv1d."
|
||||
(xz, conv1d_weight, conv1d_bias, x_dbl, x_proj_weight, delta_proj_weight, out_proj_weight,
|
||||
conv1d_out, delta, A, B, C, D, delta_bias, scan_intermediates, out) = ctx.saved_tensors
|
||||
L = xz.shape[-1]
|
||||
delta_rank = delta_proj_weight.shape[1]
|
||||
d_state = A.shape[-1] * (1 if not A.is_complex() else 2)
|
||||
x, z = xz.chunk(2, dim=1)
|
||||
if dout.stride(-1) != 1:
|
||||
dout = dout.contiguous()
|
||||
if ctx.checkpoint_lvl == 1:
|
||||
conv1d_out = causal_conv1d_cuda.causal_conv1d_fwd(
|
||||
x, conv1d_weight, conv1d_bias, None, None, None, True
|
||||
)
|
||||
delta = rearrange(delta_proj_weight @ x_dbl[:, :delta_rank].t(),
|
||||
"d (b l) -> b d l", l = L)
|
||||
# The kernel supports passing in a pre-allocated dz (e.g., in case we want to fuse the
|
||||
# backward of selective_scan_cuda with the backward of chunk).
|
||||
dxz = torch.empty_like(xz) # (batch, dim, seqlen)
|
||||
dx, dz = dxz.chunk(2, dim=1)
|
||||
dout = rearrange(dout, "b l e -> e (b l)")
|
||||
dout_y = rearrange(out_proj_weight.t() @ dout, "d (b l) -> b d l", l=L)
|
||||
dconv1d_out, ddelta, dA, dB, dC, dD, ddelta_bias, dz, out_z = selective_scan_cuda.bwd(
|
||||
conv1d_out, delta, A, B, C, D, z, delta_bias, dout_y, scan_intermediates, out, dz,
|
||||
ctx.delta_softplus,
|
||||
True # option to recompute out_z
|
||||
)
|
||||
dout_proj_weight = torch.einsum("eB,dB->ed", dout, rearrange(out_z, "b d l -> d (b l)"))
|
||||
dout_proj_bias = dout.sum(dim=(0, 1)) if not ctx.out_proj_bias_is_None else None
|
||||
dD = dD if D is not None else None
|
||||
dx_dbl = torch.empty_like(x_dbl)
|
||||
dB_proj_bias = None
|
||||
if ctx.is_variable_B:
|
||||
if not A.is_complex():
|
||||
dB = rearrange(dB, "b 1 dstate l -> (b l) dstate").contiguous()
|
||||
else:
|
||||
dB = rearrange(dB, "b 1 dstate (l two) -> (b l) (dstate two)", two=2).contiguous()
|
||||
dB_proj_bias = dB.sum(0) if not ctx.B_proj_bias_is_None else None
|
||||
dx_dbl[:, delta_rank:delta_rank + d_state] = dB # (bl d)
|
||||
dB = None
|
||||
dC_proj_bias = None
|
||||
if ctx.is_variable_C:
|
||||
if not A.is_complex():
|
||||
dC = rearrange(dC, "b 1 dstate l -> (b l) dstate").contiguous()
|
||||
else:
|
||||
dC = rearrange(dC, "b 1 dstate (l two) -> (b l) (dstate two)", two=2).contiguous()
|
||||
dC_proj_bias = dC.sum(0) if not ctx.C_proj_bias_is_None else None
|
||||
dx_dbl[:, -d_state:] = dC # (bl d)
|
||||
dC = None
|
||||
ddelta = rearrange(ddelta, "b d l -> d (b l)")
|
||||
ddelta_proj_weight = torch.einsum("dB,Br->dr", ddelta, x_dbl[:, :delta_rank])
|
||||
dx_dbl[:, :delta_rank] = torch.einsum("dB,dr->Br", ddelta, delta_proj_weight)
|
||||
dconv1d_out = rearrange(dconv1d_out, "b d l -> d (b l)")
|
||||
dx_proj_weight = torch.einsum("Br,Bd->rd", dx_dbl, rearrange(conv1d_out, "b d l -> (b l) d"))
|
||||
dconv1d_out = torch.addmm(dconv1d_out, x_proj_weight.t(), dx_dbl.t(), out=dconv1d_out)
|
||||
dconv1d_out = rearrange(dconv1d_out, "d (b l) -> b d l", b=x.shape[0], l=x.shape[-1])
|
||||
# The kernel supports passing in a pre-allocated dx (e.g., in case we want to fuse the
|
||||
# backward of conv1d with the backward of chunk).
|
||||
dx, dconv1d_weight, dconv1d_bias, *_ = causal_conv1d_cuda.causal_conv1d_bwd(
|
||||
x, conv1d_weight, conv1d_bias, dconv1d_out, None, None, None, dx, False, True
|
||||
)
|
||||
dconv1d_bias = dconv1d_bias if conv1d_bias is not None else None
|
||||
dconv1d_weight = rearrange(dconv1d_weight, "d w -> d 1 w")
|
||||
return (dxz, dconv1d_weight, dconv1d_bias, dx_proj_weight, ddelta_proj_weight,
|
||||
dout_proj_weight, dout_proj_bias,
|
||||
dA, dB, dC, dD,
|
||||
ddelta_bias if delta_bias is not None else None,
|
||||
dB_proj_bias, dC_proj_bias, None)
|
||||
|
||||
|
||||
# def mamba_inner_fn(
|
||||
# xz, conv1d_weight, conv1d_bias, x_proj_weight, delta_proj_weight,
|
||||
# out_proj_weight, out_proj_bias,
|
||||
# A, B=None, C=None, D=None, delta_bias=None, B_proj_bias=None,
|
||||
# C_proj_bias=None, delta_softplus=True
|
||||
# ):
|
||||
# return MambaInnerFn.apply(xz, conv1d_weight, conv1d_bias, x_proj_weight, delta_proj_weight,
|
||||
# out_proj_weight, out_proj_bias,
|
||||
# A, B, C, D, delta_bias, B_proj_bias, C_proj_bias, delta_softplus)
|
||||
|
||||
def mamba_inner_fn(
|
||||
xz, conv1d_weight, conv1d_bias, x_proj_weight, delta_proj_weight,
|
||||
out_proj_weight, out_proj_bias,
|
||||
A, B=None, C=None, D=None, delta_bias=None, B_proj_bias=None,
|
||||
C_proj_bias=None, delta_softplus=True
|
||||
):
|
||||
return mamba_inner_ref(xz, conv1d_weight, conv1d_bias, x_proj_weight, delta_proj_weight,
|
||||
out_proj_weight, out_proj_bias,
|
||||
A, B, C, D, delta_bias, B_proj_bias, C_proj_bias, delta_softplus)
|
||||
def mamba_inner_ref(
|
||||
xz, conv1d_weight, conv1d_bias, x_proj_weight, delta_proj_weight,
|
||||
out_proj_weight, out_proj_bias,
|
||||
A, B=None, C=None, D=None, delta_bias=None, B_proj_bias=None,
|
||||
C_proj_bias=None, delta_softplus=True
|
||||
):
|
||||
assert causal_conv1d_fn is not None, "causal_conv1d_fn is not available. Please install causal-conv1d."
|
||||
L = xz.shape[-1]
|
||||
delta_rank = delta_proj_weight.shape[1]
|
||||
d_state = A.shape[-1] * (1 if not A.is_complex() else 2)
|
||||
x, z = xz.chunk(2, dim=1)
|
||||
x = causal_conv1d_fn(x, rearrange(conv1d_weight, "d 1 w -> d w"), conv1d_bias, activation="silu")
|
||||
# We're being very careful here about the layout, to avoid extra transposes.
|
||||
# We want delta to have d as the slowest moving dimension
|
||||
# and L as the fastest moving dimension, since those are what the ssm_scan kernel expects.
|
||||
x_dbl = F.linear(rearrange(x, 'b d l -> (b l) d'), x_proj_weight) # (bl d)
|
||||
delta = delta_proj_weight @ x_dbl[:, :delta_rank].t()
|
||||
delta = rearrange(delta, "d (b l) -> b d l", l=L)
|
||||
if B is None: # variable B
|
||||
B = x_dbl[:, delta_rank:delta_rank + d_state] # (bl d)
|
||||
if B_proj_bias is not None:
|
||||
B = B + B_proj_bias.to(dtype=B.dtype)
|
||||
if not A.is_complex():
|
||||
B = rearrange(B, "(b l) dstate -> b dstate l", l=L).contiguous()
|
||||
else:
|
||||
B = rearrange(B, "(b l) (dstate two) -> b dstate (l two)", l=L, two=2).contiguous()
|
||||
if C is None: # variable B
|
||||
C = x_dbl[:, -d_state:] # (bl d)
|
||||
if C_proj_bias is not None:
|
||||
C = C + C_proj_bias.to(dtype=C.dtype)
|
||||
if not A.is_complex():
|
||||
C = rearrange(C, "(b l) dstate -> b dstate l", l=L).contiguous()
|
||||
else:
|
||||
C = rearrange(C, "(b l) (dstate two) -> b dstate (l two)", l=L, two=2).contiguous()
|
||||
y = selective_scan_fn(x, delta, A, B, C, D, z=z, delta_bias=delta_bias, delta_softplus=True)
|
||||
return F.linear(rearrange(y, "b d l -> b l d"), out_proj_weight, out_proj_bias)
|
@ -1,635 +0,0 @@
|
||||
# Copyright (c) 2023, Tri Dao.
|
||||
# Implement residual + layer_norm / rms_norm.
|
||||
|
||||
# Based on the Triton LayerNorm tutorial: https://triton-lang.org/main/getting-started/tutorials/05-layer-norm.html
|
||||
# For the backward pass, we keep weight_grad and bias_grad in registers and accumulate.
|
||||
# This is faster for dimensions up to 8k, but after that it's much slower due to register spilling.
|
||||
# The models we train have hidden dim up to 8k anyway (e.g. Llama 70B), so this is fine.
|
||||
|
||||
import math
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch.cuda.amp import custom_fwd, custom_bwd
|
||||
|
||||
import triton
|
||||
import triton.language as tl
|
||||
|
||||
|
||||
def layer_norm_ref(x, weight, bias, residual=None, eps=1e-6, prenorm=False, upcast=False):
|
||||
dtype = x.dtype
|
||||
if upcast:
|
||||
weight = weight.float()
|
||||
bias = bias.float() if bias is not None else None
|
||||
if upcast:
|
||||
x = x.float()
|
||||
residual = residual.float() if residual is not None else residual
|
||||
if residual is not None:
|
||||
x = (x + residual).to(x.dtype)
|
||||
out = F.layer_norm(x.to(weight.dtype), x.shape[-1:], weight=weight, bias=bias, eps=eps).to(
|
||||
dtype
|
||||
)
|
||||
return out if not prenorm else (out, x)
|
||||
|
||||
|
||||
def rms_norm_ref(x, weight, bias, residual=None, eps=1e-6, prenorm=False, upcast=False):
|
||||
dtype = x.dtype
|
||||
if upcast:
|
||||
weight = weight.float()
|
||||
bias = bias.float() if bias is not None else None
|
||||
if upcast:
|
||||
x = x.float()
|
||||
residual = residual.float() if residual is not None else residual
|
||||
if residual is not None:
|
||||
x = (x + residual).to(x.dtype)
|
||||
rstd = 1 / torch.sqrt((x.square()).mean(dim=-1, keepdim=True) + eps)
|
||||
out = (x * rstd * weight) + bias if bias is not None else (x * rstd * weight)
|
||||
out = out.to(dtype)
|
||||
return out if not prenorm else (out, x)
|
||||
|
||||
|
||||
@triton.autotune(
|
||||
configs=[
|
||||
triton.Config({}, num_warps=1),
|
||||
triton.Config({}, num_warps=2),
|
||||
triton.Config({}, num_warps=4),
|
||||
triton.Config({}, num_warps=8),
|
||||
triton.Config({}, num_warps=16),
|
||||
triton.Config({}, num_warps=32),
|
||||
],
|
||||
key=["N", "HAS_RESIDUAL", "STORE_RESIDUAL_OUT", "IS_RMS_NORM", "HAS_BIAS"],
|
||||
)
|
||||
# @triton.heuristics({"HAS_BIAS": lambda args: args["B"] is not None})
|
||||
# @triton.heuristics({"HAS_RESIDUAL": lambda args: args["RESIDUAL"] is not None})
|
||||
@triton.jit
|
||||
def _layer_norm_fwd_1pass_kernel(
|
||||
X, # pointer to the input
|
||||
Y, # pointer to the output
|
||||
W, # pointer to the weights
|
||||
B, # pointer to the biases
|
||||
RESIDUAL, # pointer to the residual
|
||||
RESIDUAL_OUT, # pointer to the residual
|
||||
Mean, # pointer to the mean
|
||||
Rstd, # pointer to the 1/std
|
||||
stride_x_row, # how much to increase the pointer when moving by 1 row
|
||||
stride_y_row,
|
||||
stride_res_row,
|
||||
stride_res_out_row,
|
||||
N, # number of columns in X
|
||||
eps, # epsilon to avoid division by zero
|
||||
IS_RMS_NORM: tl.constexpr,
|
||||
BLOCK_N: tl.constexpr,
|
||||
HAS_RESIDUAL: tl.constexpr,
|
||||
STORE_RESIDUAL_OUT: tl.constexpr,
|
||||
HAS_BIAS: tl.constexpr,
|
||||
):
|
||||
# Map the program id to the row of X and Y it should compute.
|
||||
row = tl.program_id(0)
|
||||
X += row * stride_x_row
|
||||
Y += row * stride_y_row
|
||||
if HAS_RESIDUAL:
|
||||
RESIDUAL += row * stride_res_row
|
||||
if STORE_RESIDUAL_OUT:
|
||||
RESIDUAL_OUT += row * stride_res_out_row
|
||||
# Compute mean and variance
|
||||
cols = tl.arange(0, BLOCK_N)
|
||||
x = tl.load(X + cols, mask=cols < N, other=0.0).to(tl.float32)
|
||||
if HAS_RESIDUAL:
|
||||
residual = tl.load(RESIDUAL + cols, mask=cols < N, other=0.0).to(tl.float32)
|
||||
x += residual
|
||||
if STORE_RESIDUAL_OUT:
|
||||
tl.store(RESIDUAL_OUT + cols, x, mask=cols < N)
|
||||
if not IS_RMS_NORM:
|
||||
mean = tl.sum(x, axis=0) / N
|
||||
tl.store(Mean + row, mean)
|
||||
xbar = tl.where(cols < N, x - mean, 0.0)
|
||||
var = tl.sum(xbar * xbar, axis=0) / N
|
||||
else:
|
||||
xbar = tl.where(cols < N, x, 0.0)
|
||||
var = tl.sum(xbar * xbar, axis=0) / N
|
||||
rstd = 1 / tl.sqrt(var + eps)
|
||||
tl.store(Rstd + row, rstd)
|
||||
# Normalize and apply linear transformation
|
||||
mask = cols < N
|
||||
w = tl.load(W + cols, mask=mask).to(tl.float32)
|
||||
if HAS_BIAS:
|
||||
b = tl.load(B + cols, mask=mask).to(tl.float32)
|
||||
x_hat = (x - mean) * rstd if not IS_RMS_NORM else x * rstd
|
||||
y = x_hat * w + b if HAS_BIAS else x_hat * w
|
||||
# Write output
|
||||
tl.store(Y + cols, y, mask=mask)
|
||||
|
||||
|
||||
def _layer_norm_fwd(
|
||||
x, weight, bias, eps, residual=None, out_dtype=None, residual_dtype=None, is_rms_norm=False
|
||||
):
|
||||
if residual is not None:
|
||||
residual_dtype = residual.dtype
|
||||
M, N = x.shape
|
||||
assert x.stride(-1) == 1
|
||||
if residual is not None:
|
||||
assert residual.stride(-1) == 1
|
||||
assert residual.shape == (M, N)
|
||||
assert weight.shape == (N,)
|
||||
assert weight.stride(-1) == 1
|
||||
if bias is not None:
|
||||
assert bias.stride(-1) == 1
|
||||
assert bias.shape == (N,)
|
||||
# allocate output
|
||||
y = torch.empty_like(x, dtype=x.dtype if out_dtype is None else out_dtype)
|
||||
assert y.stride(-1) == 1
|
||||
if residual is not None or (residual_dtype is not None and residual_dtype != x.dtype):
|
||||
residual_out = torch.empty(M, N, device=x.device, dtype=residual_dtype)
|
||||
assert residual_out.stride(-1) == 1
|
||||
else:
|
||||
residual_out = None
|
||||
mean = torch.empty((M,), dtype=torch.float32, device=x.device) if not is_rms_norm else None
|
||||
rstd = torch.empty((M,), dtype=torch.float32, device=x.device)
|
||||
# Less than 64KB per feature: enqueue fused kernel
|
||||
MAX_FUSED_SIZE = 65536 // x.element_size()
|
||||
BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(N))
|
||||
if N > BLOCK_N:
|
||||
raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.")
|
||||
# heuristics for number of warps
|
||||
with torch.cuda.device(x.device.index):
|
||||
_layer_norm_fwd_1pass_kernel[(M,)](
|
||||
x,
|
||||
y,
|
||||
weight,
|
||||
bias,
|
||||
residual,
|
||||
residual_out,
|
||||
mean,
|
||||
rstd,
|
||||
x.stride(0),
|
||||
y.stride(0),
|
||||
residual.stride(0) if residual is not None else 0,
|
||||
residual_out.stride(0) if residual_out is not None else 0,
|
||||
N,
|
||||
eps,
|
||||
is_rms_norm,
|
||||
BLOCK_N,
|
||||
residual is not None,
|
||||
residual_out is not None,
|
||||
bias is not None,
|
||||
)
|
||||
# residual_out is None if residual is None and residual_dtype == input_dtype
|
||||
return y, mean, rstd, residual_out if residual_out is not None else x
|
||||
|
||||
|
||||
@triton.autotune(
|
||||
configs=[
|
||||
triton.Config({}, num_warps=1),
|
||||
triton.Config({}, num_warps=2),
|
||||
triton.Config({}, num_warps=4),
|
||||
triton.Config({}, num_warps=8),
|
||||
triton.Config({}, num_warps=16),
|
||||
triton.Config({}, num_warps=32),
|
||||
],
|
||||
key=["N", "HAS_DRESIDUAL", "STORE_DRESIDUAL", "IS_RMS_NORM", "HAS_BIAS"],
|
||||
)
|
||||
# @triton.heuristics({"HAS_BIAS": lambda args: args["B"] is not None})
|
||||
# @triton.heuristics({"HAS_DRESIDUAL": lambda args: args["DRESIDUAL"] is not None})
|
||||
# @triton.heuristics({"STORE_DRESIDUAL": lambda args: args["DRESIDUAL_IN"] is not None})
|
||||
@triton.heuristics({"RECOMPUTE_OUTPUT": lambda args: args["Y"] is not None})
|
||||
@triton.jit
|
||||
def _layer_norm_bwd_kernel(
|
||||
X, # pointer to the input
|
||||
W, # pointer to the weights
|
||||
B, # pointer to the biases
|
||||
Y, # pointer to the output to be recomputed
|
||||
DY, # pointer to the output gradient
|
||||
DX, # pointer to the input gradient
|
||||
DW, # pointer to the partial sum of weights gradient
|
||||
DB, # pointer to the partial sum of biases gradient
|
||||
DRESIDUAL,
|
||||
DRESIDUAL_IN,
|
||||
Mean, # pointer to the mean
|
||||
Rstd, # pointer to the 1/std
|
||||
stride_x_row, # how much to increase the pointer when moving by 1 row
|
||||
stride_y_row,
|
||||
stride_dy_row,
|
||||
stride_dx_row,
|
||||
stride_dres_row,
|
||||
stride_dres_in_row,
|
||||
M, # number of rows in X
|
||||
N, # number of columns in X
|
||||
eps, # epsilon to avoid division by zero
|
||||
rows_per_program,
|
||||
IS_RMS_NORM: tl.constexpr,
|
||||
BLOCK_N: tl.constexpr,
|
||||
HAS_DRESIDUAL: tl.constexpr,
|
||||
STORE_DRESIDUAL: tl.constexpr,
|
||||
HAS_BIAS: tl.constexpr,
|
||||
RECOMPUTE_OUTPUT: tl.constexpr,
|
||||
):
|
||||
# Map the program id to the elements of X, DX, and DY it should compute.
|
||||
row_block_id = tl.program_id(0)
|
||||
row_start = row_block_id * rows_per_program
|
||||
cols = tl.arange(0, BLOCK_N)
|
||||
mask = cols < N
|
||||
X += row_start * stride_x_row
|
||||
if HAS_DRESIDUAL:
|
||||
DRESIDUAL += row_start * stride_dres_row
|
||||
if STORE_DRESIDUAL:
|
||||
DRESIDUAL_IN += row_start * stride_dres_in_row
|
||||
DY += row_start * stride_dy_row
|
||||
DX += row_start * stride_dx_row
|
||||
if RECOMPUTE_OUTPUT:
|
||||
Y += row_start * stride_y_row
|
||||
w = tl.load(W + cols, mask=mask).to(tl.float32)
|
||||
if RECOMPUTE_OUTPUT and HAS_BIAS:
|
||||
b = tl.load(B + cols, mask=mask, other=0.0).to(tl.float32)
|
||||
dw = tl.zeros((BLOCK_N,), dtype=tl.float32)
|
||||
if HAS_BIAS:
|
||||
db = tl.zeros((BLOCK_N,), dtype=tl.float32)
|
||||
row_end = min((row_block_id + 1) * rows_per_program, M)
|
||||
for row in range(row_start, row_end):
|
||||
# Load data to SRAM
|
||||
x = tl.load(X + cols, mask=mask, other=0).to(tl.float32)
|
||||
dy = tl.load(DY + cols, mask=mask, other=0).to(tl.float32)
|
||||
if not IS_RMS_NORM:
|
||||
mean = tl.load(Mean + row)
|
||||
rstd = tl.load(Rstd + row)
|
||||
# Compute dx
|
||||
xhat = (x - mean) * rstd if not IS_RMS_NORM else x * rstd
|
||||
xhat = tl.where(mask, xhat, 0.0)
|
||||
if RECOMPUTE_OUTPUT:
|
||||
y = xhat * w + b if HAS_BIAS else xhat * w
|
||||
tl.store(Y + cols, y, mask=mask)
|
||||
wdy = w * dy
|
||||
dw += dy * xhat
|
||||
if HAS_BIAS:
|
||||
db += dy
|
||||
if not IS_RMS_NORM:
|
||||
c1 = tl.sum(xhat * wdy, axis=0) / N
|
||||
c2 = tl.sum(wdy, axis=0) / N
|
||||
dx = (wdy - (xhat * c1 + c2)) * rstd
|
||||
else:
|
||||
c1 = tl.sum(xhat * wdy, axis=0) / N
|
||||
dx = (wdy - xhat * c1) * rstd
|
||||
if HAS_DRESIDUAL:
|
||||
dres = tl.load(DRESIDUAL + cols, mask=mask, other=0).to(tl.float32)
|
||||
dx += dres
|
||||
# Write dx
|
||||
if STORE_DRESIDUAL:
|
||||
tl.store(DRESIDUAL_IN + cols, dx, mask=mask)
|
||||
tl.store(DX + cols, dx, mask=mask)
|
||||
|
||||
X += stride_x_row
|
||||
if HAS_DRESIDUAL:
|
||||
DRESIDUAL += stride_dres_row
|
||||
if STORE_DRESIDUAL:
|
||||
DRESIDUAL_IN += stride_dres_in_row
|
||||
if RECOMPUTE_OUTPUT:
|
||||
Y += stride_y_row
|
||||
DY += stride_dy_row
|
||||
DX += stride_dx_row
|
||||
tl.store(DW + row_block_id * N + cols, dw, mask=mask)
|
||||
if HAS_BIAS:
|
||||
tl.store(DB + row_block_id * N + cols, db, mask=mask)
|
||||
|
||||
|
||||
def _layer_norm_bwd(
|
||||
dy,
|
||||
x,
|
||||
weight,
|
||||
bias,
|
||||
eps,
|
||||
mean,
|
||||
rstd,
|
||||
dresidual=None,
|
||||
has_residual=False,
|
||||
is_rms_norm=False,
|
||||
x_dtype=None,
|
||||
recompute_output=False,
|
||||
):
|
||||
M, N = x.shape
|
||||
assert x.stride(-1) == 1
|
||||
assert dy.stride(-1) == 1
|
||||
assert dy.shape == (M, N)
|
||||
if dresidual is not None:
|
||||
assert dresidual.stride(-1) == 1
|
||||
assert dresidual.shape == (M, N)
|
||||
assert weight.shape == (N,)
|
||||
assert weight.stride(-1) == 1
|
||||
if bias is not None:
|
||||
assert bias.stride(-1) == 1
|
||||
assert bias.shape == (N,)
|
||||
# allocate output
|
||||
dx = (
|
||||
torch.empty_like(x)
|
||||
if x_dtype is None
|
||||
else torch.empty(M, N, dtype=x_dtype, device=x.device)
|
||||
)
|
||||
dresidual_in = torch.empty_like(x) if has_residual and dx.dtype != x.dtype else None
|
||||
y = torch.empty(M, N, dtype=dy.dtype, device=dy.device) if recompute_output else None
|
||||
|
||||
# Less than 64KB per feature: enqueue fused kernel
|
||||
MAX_FUSED_SIZE = 65536 // x.element_size()
|
||||
BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(N))
|
||||
if N > BLOCK_N:
|
||||
raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.")
|
||||
sm_count = torch.cuda.get_device_properties(x.device).multi_processor_count
|
||||
_dw = torch.empty((sm_count, N), dtype=torch.float32, device=weight.device)
|
||||
_db = (
|
||||
torch.empty((sm_count, N), dtype=torch.float32, device=bias.device)
|
||||
if bias is not None
|
||||
else None
|
||||
)
|
||||
rows_per_program = math.ceil(M / sm_count)
|
||||
grid = (sm_count,)
|
||||
with torch.cuda.device(x.device.index):
|
||||
_layer_norm_bwd_kernel[grid](
|
||||
x,
|
||||
weight,
|
||||
bias,
|
||||
y,
|
||||
dy,
|
||||
dx,
|
||||
_dw,
|
||||
_db,
|
||||
dresidual,
|
||||
dresidual_in,
|
||||
mean,
|
||||
rstd,
|
||||
x.stride(0),
|
||||
0 if not recompute_output else y.stride(0),
|
||||
dy.stride(0),
|
||||
dx.stride(0),
|
||||
dresidual.stride(0) if dresidual is not None else 0,
|
||||
dresidual_in.stride(0) if dresidual_in is not None else 0,
|
||||
M,
|
||||
N,
|
||||
eps,
|
||||
rows_per_program,
|
||||
is_rms_norm,
|
||||
BLOCK_N,
|
||||
dresidual is not None,
|
||||
dresidual_in is not None,
|
||||
bias is not None,
|
||||
)
|
||||
dw = _dw.sum(0).to(weight.dtype)
|
||||
db = _db.sum(0).to(bias.dtype) if bias is not None else None
|
||||
# Don't need to compute dresidual_in separately in this case
|
||||
if has_residual and dx.dtype == x.dtype:
|
||||
dresidual_in = dx
|
||||
return (dx, dw, db, dresidual_in) if not recompute_output else (dx, dw, db, dresidual_in, y)
|
||||
|
||||
|
||||
class LayerNormFn(torch.autograd.Function):
|
||||
@staticmethod
|
||||
def forward(
|
||||
ctx,
|
||||
x,
|
||||
weight,
|
||||
bias,
|
||||
residual=None,
|
||||
eps=1e-6,
|
||||
prenorm=False,
|
||||
residual_in_fp32=False,
|
||||
is_rms_norm=False,
|
||||
):
|
||||
x_shape_og = x.shape
|
||||
# reshape input data into 2D tensor
|
||||
x = x.reshape(-1, x.shape[-1])
|
||||
if x.stride(-1) != 1:
|
||||
x = x.contiguous()
|
||||
if residual is not None:
|
||||
assert residual.shape == x_shape_og
|
||||
residual = residual.reshape(-1, residual.shape[-1])
|
||||
if residual.stride(-1) != 1:
|
||||
residual = residual.contiguous()
|
||||
weight = weight.contiguous()
|
||||
if bias is not None:
|
||||
bias = bias.contiguous()
|
||||
residual_dtype = (
|
||||
residual.dtype
|
||||
if residual is not None
|
||||
else (torch.float32 if residual_in_fp32 else None)
|
||||
)
|
||||
y, mean, rstd, residual_out = _layer_norm_fwd(
|
||||
x, weight, bias, eps, residual, residual_dtype=residual_dtype, is_rms_norm=is_rms_norm
|
||||
)
|
||||
ctx.save_for_backward(residual_out, weight, bias, mean, rstd)
|
||||
ctx.x_shape_og = x_shape_og
|
||||
ctx.eps = eps
|
||||
ctx.is_rms_norm = is_rms_norm
|
||||
ctx.has_residual = residual is not None
|
||||
ctx.prenorm = prenorm
|
||||
ctx.x_dtype = x.dtype
|
||||
y = y.reshape(x_shape_og)
|
||||
return y if not prenorm else (y, residual_out.reshape(x_shape_og))
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, dy, *args):
|
||||
x, weight, bias, mean, rstd = ctx.saved_tensors
|
||||
dy = dy.reshape(-1, dy.shape[-1])
|
||||
if dy.stride(-1) != 1:
|
||||
dy = dy.contiguous()
|
||||
assert dy.shape == x.shape
|
||||
if ctx.prenorm:
|
||||
dresidual = args[0]
|
||||
dresidual = dresidual.reshape(-1, dresidual.shape[-1])
|
||||
if dresidual.stride(-1) != 1:
|
||||
dresidual = dresidual.contiguous()
|
||||
assert dresidual.shape == x.shape
|
||||
else:
|
||||
dresidual = None
|
||||
dx, dw, db, dresidual_in = _layer_norm_bwd(
|
||||
dy,
|
||||
x,
|
||||
weight,
|
||||
bias,
|
||||
ctx.eps,
|
||||
mean,
|
||||
rstd,
|
||||
dresidual,
|
||||
ctx.has_residual,
|
||||
ctx.is_rms_norm,
|
||||
x_dtype=ctx.x_dtype,
|
||||
)
|
||||
return (
|
||||
dx.reshape(ctx.x_shape_og),
|
||||
dw,
|
||||
db,
|
||||
dresidual_in.reshape(ctx.x_shape_og) if ctx.has_residual else None,
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
)
|
||||
|
||||
|
||||
def layer_norm_fn(
|
||||
x,
|
||||
weight,
|
||||
bias,
|
||||
residual=None,
|
||||
eps=1e-6,
|
||||
prenorm=False,
|
||||
residual_in_fp32=False,
|
||||
is_rms_norm=False,
|
||||
):
|
||||
return LayerNormFn.apply(x, weight, bias, residual, eps, prenorm, residual_in_fp32, is_rms_norm)
|
||||
|
||||
|
||||
def rms_norm_fn(x, weight, bias, residual=None, prenorm=False, residual_in_fp32=False, eps=1e-6):
|
||||
return LayerNormFn.apply(x, weight, bias, residual, eps, prenorm, residual_in_fp32, True)
|
||||
|
||||
|
||||
class RMSNorm(torch.nn.Module):
|
||||
def __init__(self, hidden_size, eps=1e-5, device=None, dtype=None):
|
||||
factory_kwargs = {"device": device, "dtype": dtype}
|
||||
super().__init__()
|
||||
self.eps = eps
|
||||
self.weight = torch.nn.Parameter(torch.empty(hidden_size, **factory_kwargs))
|
||||
self.register_parameter("bias", None)
|
||||
self.reset_parameters()
|
||||
|
||||
def reset_parameters(self):
|
||||
torch.nn.init.ones_(self.weight)
|
||||
|
||||
def forward(self, x, residual=None, prenorm=False, residual_in_fp32=False):
|
||||
return rms_norm_fn(
|
||||
x,
|
||||
self.weight,
|
||||
self.bias,
|
||||
residual=residual,
|
||||
eps=self.eps,
|
||||
prenorm=prenorm,
|
||||
residual_in_fp32=residual_in_fp32,
|
||||
)
|
||||
|
||||
|
||||
class LayerNormLinearFn(torch.autograd.Function):
|
||||
@staticmethod
|
||||
@custom_fwd
|
||||
def forward(
|
||||
ctx,
|
||||
x,
|
||||
norm_weight,
|
||||
norm_bias,
|
||||
linear_weight,
|
||||
linear_bias,
|
||||
residual=None,
|
||||
eps=1e-6,
|
||||
prenorm=False,
|
||||
residual_in_fp32=False,
|
||||
is_rms_norm=False,
|
||||
):
|
||||
x_shape_og = x.shape
|
||||
# reshape input data into 2D tensor
|
||||
x = x.reshape(-1, x.shape[-1])
|
||||
if x.stride(-1) != 1:
|
||||
x = x.contiguous()
|
||||
if residual is not None:
|
||||
assert residual.shape == x_shape_og
|
||||
residual = residual.reshape(-1, residual.shape[-1])
|
||||
if residual.stride(-1) != 1:
|
||||
residual = residual.contiguous()
|
||||
norm_weight = norm_weight.contiguous()
|
||||
if norm_bias is not None:
|
||||
norm_bias = norm_bias.contiguous()
|
||||
residual_dtype = (
|
||||
residual.dtype
|
||||
if residual is not None
|
||||
else (torch.float32 if residual_in_fp32 else None)
|
||||
)
|
||||
y, mean, rstd, residual_out = _layer_norm_fwd(
|
||||
x,
|
||||
norm_weight,
|
||||
norm_bias,
|
||||
eps,
|
||||
residual,
|
||||
out_dtype=None if not torch.is_autocast_enabled() else torch.get_autocast_gpu_dtype(),
|
||||
residual_dtype=residual_dtype,
|
||||
is_rms_norm=is_rms_norm,
|
||||
)
|
||||
y = y.reshape(x_shape_og)
|
||||
dtype = torch.get_autocast_gpu_dtype() if torch.is_autocast_enabled() else y.dtype
|
||||
linear_weight = linear_weight.to(dtype)
|
||||
linear_bias = linear_bias.to(dtype) if linear_bias is not None else None
|
||||
out = F.linear(y.to(linear_weight.dtype), linear_weight, linear_bias)
|
||||
# We don't store y, will be recomputed in the backward pass to save memory
|
||||
ctx.save_for_backward(residual_out, norm_weight, norm_bias, linear_weight, mean, rstd)
|
||||
ctx.x_shape_og = x_shape_og
|
||||
ctx.eps = eps
|
||||
ctx.is_rms_norm = is_rms_norm
|
||||
ctx.has_residual = residual is not None
|
||||
ctx.prenorm = prenorm
|
||||
ctx.x_dtype = x.dtype
|
||||
ctx.linear_bias_is_none = linear_bias is None
|
||||
return out if not prenorm else (out, residual_out.reshape(x_shape_og))
|
||||
|
||||
@staticmethod
|
||||
@custom_bwd
|
||||
def backward(ctx, dout, *args):
|
||||
x, norm_weight, norm_bias, linear_weight, mean, rstd = ctx.saved_tensors
|
||||
dout = dout.reshape(-1, dout.shape[-1])
|
||||
dy = F.linear(dout, linear_weight.t())
|
||||
dlinear_bias = None if ctx.linear_bias_is_none else dout.sum(0)
|
||||
if dy.stride(-1) != 1:
|
||||
dy = dy.contiguous()
|
||||
assert dy.shape == x.shape
|
||||
if ctx.prenorm:
|
||||
dresidual = args[0]
|
||||
dresidual = dresidual.reshape(-1, dresidual.shape[-1])
|
||||
if dresidual.stride(-1) != 1:
|
||||
dresidual = dresidual.contiguous()
|
||||
assert dresidual.shape == x.shape
|
||||
else:
|
||||
dresidual = None
|
||||
dx, dnorm_weight, dnorm_bias, dresidual_in, y = _layer_norm_bwd(
|
||||
dy,
|
||||
x,
|
||||
norm_weight,
|
||||
norm_bias,
|
||||
ctx.eps,
|
||||
mean,
|
||||
rstd,
|
||||
dresidual,
|
||||
ctx.has_residual,
|
||||
ctx.is_rms_norm,
|
||||
x_dtype=ctx.x_dtype,
|
||||
recompute_output=True,
|
||||
)
|
||||
dlinear_weight = torch.einsum("bo,bi->oi", dout, y)
|
||||
return (
|
||||
dx.reshape(ctx.x_shape_og),
|
||||
dnorm_weight,
|
||||
dnorm_bias,
|
||||
dlinear_weight,
|
||||
dlinear_bias,
|
||||
dresidual_in.reshape(ctx.x_shape_og) if ctx.has_residual else None,
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
)
|
||||
|
||||
|
||||
def layer_norm_linear_fn(
|
||||
x,
|
||||
norm_weight,
|
||||
norm_bias,
|
||||
linear_weight,
|
||||
linear_bias,
|
||||
residual=None,
|
||||
eps=1e-6,
|
||||
prenorm=False,
|
||||
residual_in_fp32=False,
|
||||
is_rms_norm=False,
|
||||
):
|
||||
return LayerNormLinearFn.apply(
|
||||
x,
|
||||
norm_weight,
|
||||
norm_bias,
|
||||
linear_weight,
|
||||
linear_bias,
|
||||
residual,
|
||||
eps,
|
||||
prenorm,
|
||||
residual_in_fp32,
|
||||
is_rms_norm,
|
||||
)
|
@ -1,192 +0,0 @@
|
||||
# Copyright (c) 2023, Tri Dao.
|
||||
|
||||
"""We want triton==2.1.0 for this
|
||||
"""
|
||||
|
||||
import math
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
import triton
|
||||
import triton.language as tl
|
||||
|
||||
from einops import rearrange, repeat
|
||||
|
||||
|
||||
@triton.heuristics({"HAS_DT_BIAS": lambda args: args["dt_bias_ptr"] is not None})
|
||||
@triton.heuristics({"HAS_D": lambda args: args["D_ptr"] is not None})
|
||||
@triton.heuristics({"HAS_Z": lambda args: args["z_ptr"] is not None})
|
||||
@triton.heuristics({"BLOCK_SIZE_DSTATE": lambda args: triton.next_power_of_2(args["dstate"])})
|
||||
@triton.jit
|
||||
def _selective_scan_update_kernel(
|
||||
# Pointers to matrices
|
||||
state_ptr, x_ptr, dt_ptr, dt_bias_ptr, A_ptr, B_ptr, C_ptr, D_ptr, z_ptr, out_ptr,
|
||||
# Matrix dimensions
|
||||
batch, dim, dstate,
|
||||
# Strides
|
||||
stride_state_batch, stride_state_dim, stride_state_dstate,
|
||||
stride_x_batch, stride_x_dim,
|
||||
stride_dt_batch, stride_dt_dim,
|
||||
stride_dt_bias_dim,
|
||||
stride_A_dim, stride_A_dstate,
|
||||
stride_B_batch, stride_B_dstate,
|
||||
stride_C_batch, stride_C_dstate,
|
||||
stride_D_dim,
|
||||
stride_z_batch, stride_z_dim,
|
||||
stride_out_batch, stride_out_dim,
|
||||
# Meta-parameters
|
||||
DT_SOFTPLUS: tl.constexpr,
|
||||
BLOCK_SIZE_M: tl.constexpr,
|
||||
HAS_DT_BIAS: tl.constexpr,
|
||||
HAS_D: tl.constexpr,
|
||||
HAS_Z: tl.constexpr,
|
||||
BLOCK_SIZE_DSTATE: tl.constexpr,
|
||||
):
|
||||
pid_m = tl.program_id(axis=0)
|
||||
pid_b = tl.program_id(axis=1)
|
||||
state_ptr += pid_b * stride_state_batch
|
||||
x_ptr += pid_b * stride_x_batch
|
||||
dt_ptr += pid_b * stride_dt_batch
|
||||
B_ptr += pid_b * stride_B_batch
|
||||
C_ptr += pid_b * stride_C_batch
|
||||
if HAS_Z:
|
||||
z_ptr += pid_b * stride_z_batch
|
||||
out_ptr += pid_b * stride_out_batch
|
||||
|
||||
offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
|
||||
offs_n = tl.arange(0, BLOCK_SIZE_DSTATE)
|
||||
state_ptrs = state_ptr + (offs_m[:, None] * stride_state_dim + offs_n[None, :] * stride_state_dstate)
|
||||
x_ptrs = x_ptr + offs_m * stride_x_dim
|
||||
dt_ptrs = dt_ptr + offs_m * stride_dt_dim
|
||||
if HAS_DT_BIAS:
|
||||
dt_bias_ptrs = dt_bias_ptr + offs_m * stride_dt_bias_dim
|
||||
A_ptrs = A_ptr + (offs_m[:, None] * stride_A_dim + offs_n[None, :] * stride_A_dstate)
|
||||
B_ptrs = B_ptr + offs_n * stride_B_dstate
|
||||
C_ptrs = C_ptr + offs_n * stride_C_dstate
|
||||
if HAS_D:
|
||||
D_ptrs = D_ptr + offs_m * stride_D_dim
|
||||
if HAS_Z:
|
||||
z_ptrs = z_ptr + offs_m * stride_z_dim
|
||||
out_ptrs = out_ptr + offs_m * stride_out_dim
|
||||
|
||||
state = tl.load(state_ptrs, mask=(offs_m[:, None] < dim) & (offs_n[None, :] < dstate), other=0.0)
|
||||
x = tl.load(x_ptrs, mask=offs_m < dim, other=0.0).to(tl.float32)
|
||||
dt = tl.load(dt_ptrs, mask=offs_m < dim, other=0.0).to(tl.float32)
|
||||
if HAS_DT_BIAS:
|
||||
dt += tl.load(dt_bias_ptrs, mask=offs_m < dim, other=0.0).to(tl.float32)
|
||||
if DT_SOFTPLUS:
|
||||
dt = tl.where(dt <= 20.0, tl.math.log1p(tl.exp(dt)), dt)
|
||||
A = tl.load(A_ptrs, mask=(offs_m[:, None] < dim) & (offs_n[None, :] < dstate), other=0.0).to(tl.float32)
|
||||
dA = tl.exp(A * dt[:, None])
|
||||
B = tl.load(B_ptrs, mask=offs_n < dstate, other=0.0).to(tl.float32)
|
||||
C = tl.load(C_ptrs, mask=offs_n < dstate, other=0.0).to(tl.float32)
|
||||
if HAS_D:
|
||||
D = tl.load(D_ptrs, mask=offs_m < dim, other=0.0).to(tl.float32)
|
||||
if HAS_Z:
|
||||
z = tl.load(z_ptrs, mask=offs_m < dim, other=0.0).to(tl.float32)
|
||||
|
||||
dB = B[None, :] * dt[:, None]
|
||||
state = state * dA + dB * x[:, None]
|
||||
tl.store(state_ptrs, state, mask=(offs_m[:, None] < dim) & (offs_n[None, :] < dstate))
|
||||
out = tl.sum(state * C[None, :], axis=1)
|
||||
if HAS_D:
|
||||
out += x * D
|
||||
if HAS_Z:
|
||||
out *= z * tl.sigmoid(z)
|
||||
tl.store(out_ptrs, out, mask=offs_m < dim)
|
||||
|
||||
|
||||
def selective_state_update(state, x, dt, A, B, C, D=None, z=None, dt_bias=None, dt_softplus=False):
|
||||
"""
|
||||
Argument:
|
||||
state: (batch, dim, dstate)
|
||||
x: (batch, dim)
|
||||
dt: (batch, dim)
|
||||
A: (dim, dstate)
|
||||
B: (batch, dstate)
|
||||
C: (batch, dstate)
|
||||
D: (dim,)
|
||||
z: (batch, dim)
|
||||
dt_bias: (dim,)
|
||||
Return:
|
||||
out: (batch, dim)
|
||||
"""
|
||||
batch, dim, dstate = state.shape
|
||||
assert x.shape == (batch, dim)
|
||||
assert dt.shape == x.shape
|
||||
assert A.shape == (dim, dstate)
|
||||
assert B.shape == (batch, dstate)
|
||||
assert C.shape == B.shape
|
||||
if D is not None:
|
||||
assert D.shape == (dim,)
|
||||
if z is not None:
|
||||
assert z.shape == x.shape
|
||||
if dt_bias is not None:
|
||||
assert dt_bias.shape == (dim,)
|
||||
out = torch.empty_like(x)
|
||||
grid = lambda META: (triton.cdiv(dim, META['BLOCK_SIZE_M']), batch)
|
||||
z_strides = ((z.stride(0), z.stride(1)) if z is not None else (0, 0))
|
||||
# We don't want autotune since it will overwrite the state
|
||||
# We instead tune by hand.
|
||||
BLOCK_SIZE_M, num_warps = ((32, 4) if dstate <= 16
|
||||
else ((16, 4) if dstate <= 32 else
|
||||
((8, 4) if dstate <= 64 else
|
||||
((4, 4) if dstate <= 128 else
|
||||
((4, 8))))))
|
||||
with torch.cuda.device(x.device.index):
|
||||
_selective_scan_update_kernel[grid](
|
||||
state, x, dt, dt_bias, A, B, C, D, z, out,
|
||||
batch, dim, dstate,
|
||||
state.stride(0), state.stride(1), state.stride(2),
|
||||
x.stride(0), x.stride(1),
|
||||
dt.stride(0), dt.stride(1),
|
||||
dt_bias.stride(0) if dt_bias is not None else 0,
|
||||
A.stride(0), A.stride(1),
|
||||
B.stride(0), B.stride(1),
|
||||
C.stride(0), C.stride(1),
|
||||
D.stride(0) if D is not None else 0,
|
||||
z_strides[0], z_strides[1],
|
||||
out.stride(0), out.stride(1),
|
||||
dt_softplus,
|
||||
BLOCK_SIZE_M,
|
||||
num_warps=num_warps,
|
||||
)
|
||||
return out
|
||||
|
||||
|
||||
def selective_state_update_ref(state, x, dt, A, B, C, D=None, z=None, dt_bias=None, dt_softplus=False):
|
||||
"""
|
||||
Argument:
|
||||
state: (batch, dim, dstate)
|
||||
x: (batch, dim)
|
||||
dt: (batch, dim)
|
||||
A: (dim, dstate)
|
||||
B: (batch, dstate)
|
||||
C: (batch, dstate)
|
||||
D: (dim,)
|
||||
z: (batch, dim)
|
||||
dt_bias: (dim,)
|
||||
Return:
|
||||
out: (batch, dim)
|
||||
"""
|
||||
batch, dim, dstate = state.shape
|
||||
assert x.shape == (batch, dim)
|
||||
assert dt.shape == x.shape
|
||||
assert A.shape == (dim, dstate)
|
||||
assert B.shape == (batch, dstate)
|
||||
assert C.shape == B.shape
|
||||
if D is not None:
|
||||
assert D.shape == (dim,)
|
||||
if z is not None:
|
||||
assert z.shape == x.shape
|
||||
if dt_bias is not None:
|
||||
assert dt_bias.shape == (dim,)
|
||||
dt = dt + dt_bias
|
||||
dt = F.softplus(dt) if dt_softplus else dt
|
||||
dA = torch.exp(rearrange(dt, "b d -> b d 1") * A) # (batch, dim, dstate)
|
||||
dB = rearrange(dt, "b d -> b d 1") * rearrange(B, "b n -> b 1 n") # (batch, dim, dstate)
|
||||
state.copy_(state * dA + dB * rearrange(x, "b d -> b d 1")) # (batch, dim, dstate
|
||||
out = torch.einsum("bdn,bn->bd", state.to(C.dtype), C)
|
||||
if D is not None:
|
||||
out += (x * D).to(out.dtype)
|
||||
return (out if z is None else out * F.silu(z)).to(x.dtype)
|
@ -1,387 +0,0 @@
|
||||
# Copyright (c) 2023, Albert Gu, Tri Dao.
|
||||
import gc
|
||||
import time
|
||||
from collections import namedtuple
|
||||
from dataclasses import dataclass, field
|
||||
from functools import partial
|
||||
from typing import Callable, Optional, Sequence, Union
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from einops import rearrange, repeat
|
||||
from torch import Tensor
|
||||
from torch.profiler import ProfilerActivity, profile, record_function
|
||||
from transformers.generation import GreedySearchDecoderOnlyOutput, SampleDecoderOnlyOutput, TextStreamer
|
||||
|
||||
|
||||
@dataclass
|
||||
class InferenceParams:
|
||||
"""Inference parameters that are passed to the main model in order
|
||||
to efficienly calculate and store the context during inference."""
|
||||
|
||||
max_seqlen: int
|
||||
max_batch_size: int
|
||||
seqlen_offset: int = 0
|
||||
batch_size_offset: int = 0
|
||||
key_value_memory_dict: dict = field(default_factory=dict)
|
||||
lengths_per_sample: Optional[Tensor] = None
|
||||
|
||||
def reset(self, max_seqlen, max_batch_size):
|
||||
self.max_seqlen = max_seqlen
|
||||
self.max_batch_size = max_batch_size
|
||||
self.seqlen_offset = 0
|
||||
if self.lengths_per_sample is not None:
|
||||
self.lengths_per_sample.zero_()
|
||||
|
||||
|
||||
def modify_logits_for_min_p_filtering(logits, min_p):
|
||||
"""Set the logits for none min_p values to -inf. Done in-place."""
|
||||
if min_p <= 0.0 or min_p >= 1.0:
|
||||
return
|
||||
indices_to_remove = logits < min_p
|
||||
logits.masked_fill_(indices_to_remove, float("-Inf"))
|
||||
# https://github.com/NVIDIA/Megatron-LM/blob/0bb597b42c53355a567aba2a1357cc34b9d99ddd/megatron/text_generation/sampling.py
|
||||
# https://github.com/huggingface/transformers/blob/a44985b41cfa2de48a5e1de7f1f93b7483da25d1/src/transformers/generation/logits_process.py#L231
|
||||
def modify_logits_for_top_k_filtering(logits, top_k):
|
||||
"""Set the logits for none top-k values to -inf. Done in-place."""
|
||||
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
|
||||
logits.masked_fill_(indices_to_remove, float("-Inf"))
|
||||
|
||||
|
||||
# https://github.com/NVIDIA/Megatron-LM/blob/0bb597b42c53355a567aba2a1357cc34b9d99ddd/megatron/text_generation/sampling.py
|
||||
# https://github.com/huggingface/transformers/blob/a44985b41cfa2de48a5e1de7f1f93b7483da25d1/src/transformers/generation/logits_process.py#L170
|
||||
def modify_logits_for_top_p_filtering(logits, top_p):
|
||||
"""Set the logits for none top-p values to -inf. Done in-place."""
|
||||
if top_p <= 0.0 or top_p >= 1.0:
|
||||
return
|
||||
# First sort and calculate cumulative sum of probabilities.
|
||||
sorted_logits, sorted_indices = torch.sort(logits, descending=False)
|
||||
cumulative_probs = sorted_logits.softmax(dim=-1).cumsum(dim=-1)
|
||||
# Remove tokens with cumulative top_p above the threshold (token with 0 are kept)
|
||||
sorted_indices_to_remove = cumulative_probs <= (1 - top_p)
|
||||
# scatter sorted tensors to original indexing
|
||||
indices_to_remove = sorted_indices_to_remove.scatter(
|
||||
1, sorted_indices, sorted_indices_to_remove
|
||||
)
|
||||
logits.masked_fill_(indices_to_remove, float("-inf"))
|
||||
|
||||
|
||||
def modify_logit_for_repetition_penalty(logits, prev_output_tokens, repetition_penalty=1.0):
|
||||
"""Apply repetition penalty. See https://arxiv.org/abs/1909.05858
|
||||
logits: (batch_size, vocab_size)
|
||||
prev_output_tokens: (batch_size, seq_len)
|
||||
"""
|
||||
if repetition_penalty == 1.0:
|
||||
return logits
|
||||
score = torch.gather(logits, 1, prev_output_tokens)
|
||||
# if score < 0 then repetition penalty has to be multiplied to reduce the previous token probability
|
||||
score = torch.where(score < 0, score * repetition_penalty, score / repetition_penalty)
|
||||
logits.scatter_(1, prev_output_tokens, score)
|
||||
return logits
|
||||
|
||||
|
||||
def sample(logits, top_k=1, top_p=0.0, min_p=0.0, temperature=1.0):
|
||||
"""Sample from top-k logits.
|
||||
Arguments:
|
||||
logits: Tensor of shape (batch_size, vocab_size)
|
||||
"""
|
||||
if top_k == 1: # Short-circuit for greedy decoding
|
||||
return logits.argmax(dim=-1)
|
||||
else:
|
||||
if top_p > 0.0:
|
||||
assert top_p <= 1.0, "top-p should be in (0, 1]."
|
||||
if top_k > 0:
|
||||
top_k = min(top_k, logits.size(-1)) # Safety check
|
||||
logits_top, indices = torch.topk(logits, top_k, dim=-1)
|
||||
if temperature != 1.0:
|
||||
logits_top /= temperature
|
||||
modify_logits_for_top_p_filtering(logits_top, top_p)
|
||||
return indices[
|
||||
torch.arange(indices.shape[0], device=indices.device),
|
||||
torch.multinomial(torch.softmax(logits_top, dim=-1), num_samples=1).squeeze(dim=-1),
|
||||
]
|
||||
else:
|
||||
if min_p > 0.0:
|
||||
logits_top = logits.clone()
|
||||
max_prob = logits_top[..., 0].item()
|
||||
min_prob = max_prob * min_p
|
||||
modify_logits_for_min_p_filtering(logits_top, min_p)
|
||||
if temperature != 1.0:
|
||||
logits_top /= temperature
|
||||
return torch.multinomial(torch.softmax(logits_top, dim=-1), num_samples=1).squeeze(dim=-1)
|
||||
# Clone so that when we modify for top_p we don't change the original logits
|
||||
logits_top = logits / temperature if temperature != 1.0 else logits.clone()
|
||||
modify_logits_for_top_p_filtering(logits_top, top_p)
|
||||
return torch.multinomial(torch.softmax(logits_top, dim=-1), num_samples=1).squeeze(
|
||||
dim=-1
|
||||
)
|
||||
|
||||
|
||||
@torch.inference_mode()
|
||||
def decode(
|
||||
input_ids,
|
||||
model,
|
||||
max_length,
|
||||
top_k=1,
|
||||
top_p=0.0,
|
||||
min_p=0.0,
|
||||
temperature=1.0,
|
||||
repetition_penalty=1.0,
|
||||
eos_token_id=None,
|
||||
teacher_outputs=None,
|
||||
vocab_size=None,
|
||||
cg=False,
|
||||
enable_timing=False,
|
||||
streamer: Optional[TextStreamer] = None
|
||||
):
|
||||
"""Decoding, either greedy or with top-k or top-p sampling.
|
||||
If top-k = 0, don't limit the number of candidates (pure sampling).
|
||||
Top-k and top-p can be used together. If top_k > 0 and top_p > 0, then top-k is applied first,
|
||||
then top-p.
|
||||
We assume that all sequences in the same batch have the same length.
|
||||
|
||||
Arguments:
|
||||
input_ids: (batch, seq_len)
|
||||
max_length: int
|
||||
teacher_outputs (optional): (batch, seq_len). If provided, instead of sampling from the
|
||||
logits, the next token is taken from the teacher_outputs. Useful for testing.
|
||||
Returns: GreedySearchDecoderOnlyOutput or SampleDecoderOnlyOutput, with the following fields:
|
||||
sequences: (batch, max_length)
|
||||
scores: tuples of (batch, vocab_size)
|
||||
"""
|
||||
if streamer is not None:
|
||||
streamer.put(input_ids.cpu())
|
||||
|
||||
batch_size, seqlen_og = input_ids.shape
|
||||
teacher_output_len = teacher_outputs.shape[1] if teacher_outputs is not None else 0
|
||||
if cg:
|
||||
if not hasattr(model, "_decoding_cache"):
|
||||
model._decoding_cache = None
|
||||
model._decoding_cache = update_graph_cache(
|
||||
model,
|
||||
model._decoding_cache,
|
||||
batch_size,
|
||||
seqlen_og,
|
||||
max_length,
|
||||
)
|
||||
inference_params = model._decoding_cache.inference_params
|
||||
inference_params.reset(max_length, batch_size)
|
||||
else:
|
||||
inference_params = InferenceParams(max_seqlen=max_length, max_batch_size=batch_size)
|
||||
|
||||
def get_logits(input_ids, inference_params):
|
||||
decoding = inference_params.seqlen_offset > 0
|
||||
if decoding:
|
||||
position_ids = torch.full(
|
||||
(batch_size, 1),
|
||||
inference_params.seqlen_offset,
|
||||
dtype=torch.long,
|
||||
device=input_ids.device,
|
||||
)
|
||||
else:
|
||||
position_ids = None
|
||||
if not cg or not decoding:
|
||||
logits = model(
|
||||
input_ids,
|
||||
position_ids=position_ids,
|
||||
inference_params=inference_params,
|
||||
num_last_tokens=1,
|
||||
).logits.squeeze(dim=1)
|
||||
else:
|
||||
logits = model._decoding_cache.run(
|
||||
input_ids, position_ids, inference_params.seqlen_offset
|
||||
).squeeze(dim=1)
|
||||
return logits[..., :vocab_size] if vocab_size is not None else logits
|
||||
|
||||
def sample_tokens(logits, inference_params):
|
||||
if teacher_outputs is None or teacher_output_len <= inference_params.seqlen_offset:
|
||||
token = sample(logits, top_k=top_k, top_p=top_p, min_p=min_p, temperature=temperature)
|
||||
else:
|
||||
token = teacher_outputs[:, inference_params.seqlen_offset]
|
||||
# return rearrange(token, "b -> b 1")
|
||||
return token.unsqueeze(1)
|
||||
|
||||
def should_stop(current_token, inference_params):
|
||||
if inference_params.seqlen_offset == 0:
|
||||
return False
|
||||
if eos_token_id is not None and (current_token == eos_token_id).all():
|
||||
return True
|
||||
if inference_params.seqlen_offset >= max_length - 1:
|
||||
return True
|
||||
return False
|
||||
|
||||
start = torch.cuda.Event(enable_timing=enable_timing)
|
||||
end = torch.cuda.Event(enable_timing=enable_timing)
|
||||
|
||||
if enable_timing:
|
||||
start.record()
|
||||
scores, sequences = [], [input_ids]
|
||||
sequences_cat = input_ids
|
||||
while not should_stop(sequences[-1], inference_params):
|
||||
scores.append(get_logits(sequences[-1], inference_params))
|
||||
inference_params.seqlen_offset += sequences[-1].shape[1]
|
||||
if repetition_penalty == 1.0:
|
||||
sampled_tokens = sample_tokens(scores[-1], inference_params)
|
||||
else:
|
||||
logits = modify_logit_for_repetition_penalty(
|
||||
scores[-1].clone(), sequences_cat, repetition_penalty
|
||||
)
|
||||
sampled_tokens = sample_tokens(logits, inference_params)
|
||||
sequences_cat = torch.cat([sequences_cat, sampled_tokens], dim=1)
|
||||
sequences.append(sampled_tokens)
|
||||
if streamer is not None:
|
||||
streamer.put(sampled_tokens.cpu())
|
||||
if streamer is not None:
|
||||
streamer.end()
|
||||
if enable_timing:
|
||||
end.record()
|
||||
torch.cuda.synchronize()
|
||||
print(f"Prompt processing + decoding time: {(start.elapsed_time(end)):.0f}ms")
|
||||
output_cls = GreedySearchDecoderOnlyOutput if top_k == 1 else SampleDecoderOnlyOutput
|
||||
return output_cls(sequences=torch.cat(sequences, dim=1), scores=tuple(scores))
|
||||
|
||||
|
||||
class GenerationMixin:
|
||||
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
|
||||
raise NotImplementedError
|
||||
|
||||
def generate(
|
||||
self,
|
||||
input_ids,
|
||||
max_length,
|
||||
top_k=1,
|
||||
top_p=0.0,
|
||||
min_p=0.0,
|
||||
temperature=1.0,
|
||||
return_dict_in_generate=False,
|
||||
output_scores=False,
|
||||
**kwargs,
|
||||
):
|
||||
output = decode(
|
||||
input_ids, self, max_length, top_k=top_k, top_p=top_p, min_p = min_p, temperature=temperature, **kwargs
|
||||
)
|
||||
if not output_scores:
|
||||
output.scores = None
|
||||
return output if return_dict_in_generate else output.sequences
|
||||
|
||||
|
||||
@dataclass
|
||||
class DecodingCGCache:
|
||||
max_batch_size: int = 0
|
||||
max_seqlen: int = 0
|
||||
device = None
|
||||
dtype = None
|
||||
callables: dict = field(default_factory=dict)
|
||||
mempool = None
|
||||
inference_params: Optional[InferenceParams] = None
|
||||
run: Optional[Callable] = None
|
||||
|
||||
|
||||
@torch.inference_mode()
|
||||
def update_graph_cache(
|
||||
model,
|
||||
cache,
|
||||
batch_size,
|
||||
seqlen_og,
|
||||
max_seqlen,
|
||||
decoding_seqlens=(1,),
|
||||
dtype=None,
|
||||
n_warmups=2,
|
||||
):
|
||||
if cache is None:
|
||||
cache = DecodingCGCache()
|
||||
param_example = next(iter(model.parameters()))
|
||||
device = param_example.device
|
||||
if dtype is None:
|
||||
dtype = param_example.dtype
|
||||
if (
|
||||
(device, dtype) != (cache.device, cache.dtype)
|
||||
or batch_size > cache.max_batch_size
|
||||
or max_seqlen > cache.max_seqlen
|
||||
): # Invalidate the cache
|
||||
cache.callables = {}
|
||||
cache.mempool = None
|
||||
cache.inference_params = None
|
||||
gc.collect()
|
||||
cache.device, cache.dtype = device, dtype
|
||||
cache.max_batch_size, cache.max_seqlen = batch_size, max_seqlen
|
||||
assert hasattr(model, "allocate_inference_cache"), "CUDA graph decoding requires that the model has a method allocate_inference_cache"
|
||||
inf_cache = model.allocate_inference_cache(batch_size, max_seqlen, dtype)
|
||||
lengths_per_sample = torch.full((batch_size,), seqlen_og, dtype=torch.int32, device=device)
|
||||
cache.inference_params = InferenceParams(
|
||||
max_seqlen=max_seqlen,
|
||||
max_batch_size=batch_size,
|
||||
seqlen_offset=seqlen_og,
|
||||
key_value_memory_dict=inf_cache,
|
||||
lengths_per_sample=lengths_per_sample,
|
||||
)
|
||||
cache.mempool = torch.cuda.graphs.graph_pool_handle()
|
||||
for decoding_seqlen in decoding_seqlens:
|
||||
if (batch_size, decoding_seqlen) not in cache.callables:
|
||||
cache.callables[batch_size, decoding_seqlen] = capture_graph(
|
||||
model,
|
||||
cache.inference_params,
|
||||
batch_size,
|
||||
max_seqlen,
|
||||
decoding_seqlen=decoding_seqlen,
|
||||
mempool=cache.mempool,
|
||||
n_warmups=n_warmups,
|
||||
)
|
||||
|
||||
def dispatch(input_ids, position_ids, seqlen):
|
||||
batch_size, decoding_seqlen = input_ids.shape[:2]
|
||||
return cache.callables[batch_size, decoding_seqlen](input_ids, position_ids, seqlen)
|
||||
|
||||
cache.run = dispatch
|
||||
cache.inference_params.seqlen_offset = 0 # Reset so it's not confusing
|
||||
return cache
|
||||
|
||||
|
||||
def capture_graph(
|
||||
model, inference_params, batch_size, max_seqlen, decoding_seqlen=1, mempool=None, n_warmups=2
|
||||
):
|
||||
device = next(iter(model.parameters())).device
|
||||
input_ids = torch.full((batch_size, decoding_seqlen), 0, dtype=torch.long, device=device)
|
||||
position_ids = torch.full((batch_size, decoding_seqlen), 0, dtype=torch.long, device=device)
|
||||
seqlen_offset_og = inference_params.seqlen_offset
|
||||
inference_params.seqlen_offset = max_seqlen - decoding_seqlen
|
||||
inference_params.lengths_per_sample[:] = inference_params.seqlen_offset
|
||||
|
||||
# Warmup before capture
|
||||
s = torch.cuda.Stream()
|
||||
s.wait_stream(torch.cuda.current_stream())
|
||||
with torch.cuda.stream(s):
|
||||
for _ in range(n_warmups):
|
||||
logits = model(
|
||||
input_ids,
|
||||
position_ids=position_ids,
|
||||
inference_params=inference_params,
|
||||
num_last_tokens=decoding_seqlen,
|
||||
).logits
|
||||
s.synchronize()
|
||||
# This might be needed for correctness if we run with NCCL_GRAPH_MIXING_SUPPORT=0,
|
||||
# which requires that graph launch and non-captured launch to not overlap (I think,
|
||||
# that's how I interpret the documentation). I'm not sure if this is required.
|
||||
if torch.distributed.is_initialized():
|
||||
torch.distributed.barrier()
|
||||
torch.cuda.current_stream().wait_stream(s)
|
||||
# Captures the graph
|
||||
# To allow capture, automatically sets a side stream as the current stream in the context
|
||||
graph = torch.cuda.CUDAGraph()
|
||||
with torch.cuda.graph(graph, pool=mempool):
|
||||
logits = model(
|
||||
input_ids,
|
||||
position_ids=position_ids,
|
||||
inference_params=inference_params,
|
||||
num_last_tokens=decoding_seqlen,
|
||||
).logits
|
||||
|
||||
def run(new_input_ids, new_position_ids, seqlen):
|
||||
inference_params.lengths_per_sample[:] = seqlen
|
||||
input_ids.copy_(new_input_ids)
|
||||
position_ids.copy_(new_position_ids)
|
||||
graph.replay()
|
||||
return logits.clone()
|
||||
|
||||
inference_params.seqlen_offset = seqlen_offset_og
|
||||
return run
|
@ -1,23 +0,0 @@
|
||||
import json
|
||||
|
||||
import torch
|
||||
|
||||
from transformers.utils import WEIGHTS_NAME, CONFIG_NAME
|
||||
from transformers.utils.hub import cached_file
|
||||
|
||||
|
||||
def load_config_hf(model_name):
|
||||
resolved_archive_file = cached_file(model_name, CONFIG_NAME, _raise_exceptions_for_missing_entries=False)
|
||||
return json.load(open(resolved_archive_file))
|
||||
|
||||
|
||||
def load_state_dict_hf(model_name, device=None, dtype=None):
|
||||
# If not fp32, then we don't want to load directly to the GPU
|
||||
mapped_device = "cpu" if dtype not in [torch.float32, None] else device
|
||||
resolved_archive_file = cached_file(model_name, WEIGHTS_NAME, _raise_exceptions_for_missing_entries=False)
|
||||
return torch.load(resolved_archive_file, map_location=mapped_device)
|
||||
# Convert dtype before moving to GPU to save memory
|
||||
if dtype is not None:
|
||||
state_dict = {k: v.to(dtype=dtype) for k, v in state_dict.items()}
|
||||
state_dict = {k: v.to(device=device) for k, v in state_dict.items()}
|
||||
return state_dict
|
126
net.py
126
net.py
@ -6,10 +6,7 @@ import torch.utils.checkpoint as checkpoint
|
||||
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
|
||||
from einops import rearrange
|
||||
|
||||
from componets.WTConvCV2 import WTConv2d
|
||||
|
||||
|
||||
# 以一定概率随机丢弃输入张量中的路径,用于正则化模型
|
||||
def drop_path(x, drop_prob: float = 0., training: bool = False):
|
||||
if drop_prob == 0. or not training:
|
||||
return x
|
||||
@ -35,9 +32,6 @@ class DropPath(nn.Module):
|
||||
def forward(self, x):
|
||||
return drop_path(x, self.drop_prob, self.training)
|
||||
|
||||
|
||||
|
||||
# 改点,使用Pooling替换AttentionBase
|
||||
class Pooling(nn.Module):
|
||||
def __init__(self, kernel_size=3):
|
||||
super().__init__()
|
||||
@ -50,8 +44,8 @@ class Pooling(nn.Module):
|
||||
|
||||
class PoolMlp(nn.Module):
|
||||
"""
|
||||
实现基于1x1卷积的MLP模块。
|
||||
输入:形状为[B, C, H, W]的张量。
|
||||
Implementation of MLP with 1*1 convolutions.
|
||||
Input: tensor with shape [B, C, H, W]
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
@ -61,17 +55,6 @@ class PoolMlp(nn.Module):
|
||||
act_layer=nn.GELU,
|
||||
bias=False,
|
||||
drop=0.):
|
||||
"""
|
||||
初始化PoolMlp模块。
|
||||
|
||||
参数:
|
||||
in_features (int): 输入特征的数量。
|
||||
hidden_features (int, 可选): 隐藏层特征的数量。默认为None,设置为与in_features相同。
|
||||
out_features (int, 可选): 输出特征的数量。默认为None,设置为与in_features相同。
|
||||
act_layer (nn.Module, 可选): 使用的激活层。默认为nn.GELU。
|
||||
bias (bool, 可选): 是否在卷积层中包含偏置项。默认为False。
|
||||
drop (float, 可选): Dropout比率。默认为0。
|
||||
"""
|
||||
super().__init__()
|
||||
out_features = out_features or in_features
|
||||
hidden_features = hidden_features or in_features
|
||||
@ -81,15 +64,6 @@ class PoolMlp(nn.Module):
|
||||
self.drop = nn.Dropout(drop)
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
通过PoolMlp模块的前向传播。
|
||||
|
||||
参数:
|
||||
x (torch.Tensor): 形状为[B, C, H, W]的输入张量。
|
||||
|
||||
返回:
|
||||
torch.Tensor: 形状为[B, C, H, W]的输出张量。
|
||||
"""
|
||||
x = self.fc1(x) # (B, C, H, W) --> (B, C, H, W)
|
||||
x = self.act(x)
|
||||
x = self.drop(x)
|
||||
@ -97,55 +71,6 @@ class PoolMlp(nn.Module):
|
||||
x = self.drop(x)
|
||||
return x
|
||||
|
||||
|
||||
# class BaseFeatureExtraction1(nn.Module):
|
||||
# def __init__(self, dim, pool_size=3, mlp_ratio=4.,
|
||||
# act_layer=nn.GELU,
|
||||
# # norm_layer=nn.LayerNorm,
|
||||
# drop=0., drop_path=0.,
|
||||
# use_layer_scale=True, layer_scale_init_value=1e-5):
|
||||
#
|
||||
# super().__init__()
|
||||
#
|
||||
# self.norm1 = LayerNorm(dim, 'WithBias')
|
||||
# self.token_mixer = Pooling(kernel_size=pool_size) # vits是msa,MLPs是mlp,这个用pool来替代
|
||||
# self.norm2 = LayerNorm(dim, 'WithBias')
|
||||
# mlp_hidden_dim = int(dim * mlp_ratio)
|
||||
# self.poolmlp = PoolMlp(in_features=dim, hidden_features=mlp_hidden_dim,
|
||||
# act_layer=act_layer, drop=drop)
|
||||
#
|
||||
# # The following two techniques are useful to train deep PoolFormers.
|
||||
# self.drop_path = DropPath(drop_path) if drop_path > 0. \
|
||||
# else nn.Identity()
|
||||
# self.use_layer_scale = use_layer_scale
|
||||
#
|
||||
# if use_layer_scale:
|
||||
# self.layer_scale_1 = nn.Parameter(
|
||||
# torch.ones(dim, dtype=torch.float32) * layer_scale_init_value)
|
||||
#
|
||||
# self.layer_scale_2 = nn.Parameter(
|
||||
# torch.ones(dim, dtype=torch.float32) * layer_scale_init_value)
|
||||
#
|
||||
# def forward(self, x): # 1 64 128 128
|
||||
# if self.use_layer_scale:
|
||||
# # self.layer_scale_1(64,)
|
||||
# tmp1 = self.layer_scale_1.unsqueeze(-1).unsqueeze(-1) # 64 1 1
|
||||
# normal = self.norm1(x) # 1 64 128 128
|
||||
# token_mix = self.token_mixer(normal) # 1 64 128 128
|
||||
# x = (x +
|
||||
# self.drop_path(
|
||||
# tmp1 * token_mix
|
||||
# )
|
||||
# # 该表达式将 self.layer_scale_1 这个一维张量(或变量)在维度末尾添加两个新的维度,使其从一维变为三维。这通常用于使其能够与三维的特征图进行广播操作,如元素相乘。具体用途可能包括调整卷积层或注意力机制中的权重。
|
||||
# )
|
||||
# x = x + self.drop_path(
|
||||
# self.layer_scale_2.unsqueeze(-1).unsqueeze(-1)
|
||||
# * self.poolmlp(self.norm2(x)))
|
||||
# else:
|
||||
# x = x + self.drop_path(self.token_mixer(self.norm1(x))) # 匹配cddfuse
|
||||
# x = x + self.drop_path(self.poolmlp(self.norm2(x)))
|
||||
# return x
|
||||
|
||||
class BaseFeatureExtraction(nn.Module):
|
||||
def __init__(self, dim, pool_size=3, mlp_ratio=4.,
|
||||
act_layer=nn.GELU,
|
||||
@ -155,7 +80,6 @@ class BaseFeatureExtraction(nn.Module):
|
||||
|
||||
super().__init__()
|
||||
|
||||
self.WTConv2d = WTConv2d(dim, dim)
|
||||
self.norm1 = LayerNorm(dim, 'WithBias')
|
||||
self.token_mixer = Pooling(kernel_size=pool_size) # vits是msa,MLPs是mlp,这个用pool来替代
|
||||
self.norm2 = LayerNorm(dim, 'WithBias')
|
||||
@ -175,29 +99,20 @@ class BaseFeatureExtraction(nn.Module):
|
||||
self.layer_scale_2 = nn.Parameter(
|
||||
torch.ones(dim, dtype=torch.float32) * layer_scale_init_value)
|
||||
|
||||
def forward(self, x): # 1 64 128 128
|
||||
def forward(self, x):
|
||||
if self.use_layer_scale:
|
||||
# self.layer_scale_1(64,)
|
||||
tmp1 = self.layer_scale_1.unsqueeze(-1).unsqueeze(-1) # 64 1 1
|
||||
normal = self.norm1(x) # 1 64 128 128
|
||||
token_mix = self.token_mixer(normal) # 1 64 128 128
|
||||
|
||||
x = self.WTConv2d(x)
|
||||
|
||||
x = (x +
|
||||
self.drop_path(
|
||||
tmp1 * token_mix
|
||||
)
|
||||
# 该表达式将 self.layer_scale_1 这个一维张量(或变量)在维度末尾添加两个新的维度,使其从一维变为三维。这通常用于使其能够与三维的特征图进行广播操作,如元素相乘。具体用途可能包括调整卷积层或注意力机制中的权重。
|
||||
)
|
||||
x = x + self.drop_path(
|
||||
self.layer_scale_1.unsqueeze(-1).unsqueeze(-1)
|
||||
* self.token_mixer(self.norm1(x)))
|
||||
x = x + self.drop_path(
|
||||
self.layer_scale_2.unsqueeze(-1).unsqueeze(-1)
|
||||
* self.poolmlp(self.norm2(x)))
|
||||
else:
|
||||
x = x + self.drop_path(self.token_mixer(self.norm1(x))) # 匹配cddfuse
|
||||
x = x + self.drop_path(self.token_mixer(self.norm1(x)))
|
||||
x = x + self.drop_path(self.poolmlp(self.norm2(x)))
|
||||
return x
|
||||
|
||||
|
||||
class InvertedResidualBlock(nn.Module):
|
||||
def __init__(self, inp, oup, expand_ratio):
|
||||
super(InvertedResidualBlock, self).__init__()
|
||||
@ -216,12 +131,12 @@ class InvertedResidualBlock(nn.Module):
|
||||
nn.Conv2d(hidden_dim, oup, 1, bias=False),
|
||||
# nn.BatchNorm2d(oup),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.bottleneckBlock(x)
|
||||
|
||||
class DetailNode(nn.Module):
|
||||
|
||||
# <img src = "http://42.192.130.83:9000/picgo/imgs/小绿鲸英文文献阅读器_ELTITYqm5G.png" / > '
|
||||
class DetailNode(nn.Module):
|
||||
def __init__(self):
|
||||
super(DetailNode, self).__init__()
|
||||
|
||||
@ -248,24 +163,14 @@ class DetailFeatureExtraction(nn.Module):
|
||||
super(DetailFeatureExtraction, self).__init__()
|
||||
INNmodules = [DetailNode() for _ in range(num_layers)]
|
||||
self.net = nn.Sequential(*INNmodules)
|
||||
self.enhancement_module = nn.Sequential(
|
||||
nn.Conv2d(32, 32, kernel_size=3, padding=1, bias=True),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.Conv2d(32, 32, kernel_size=3, padding=1, bias=True),
|
||||
)
|
||||
|
||||
def forward(self, x): # 1 64 128 128
|
||||
z1, z2 = x[:, :x.shape[1] // 2], x[:, x.shape[1] // 2:x.shape[1]] # 1 32 128 128
|
||||
# 增强并添加残差连接
|
||||
enhanced_z1 = self.enhancement_module(z1)
|
||||
enhanced_z2 = self.enhancement_module(z2)
|
||||
# 残差连接
|
||||
z1 = z1 + enhanced_z1
|
||||
z2 = z2 + enhanced_z2
|
||||
def forward(self, x):
|
||||
z1, z2 = x[:, :x.shape[1] // 2], x[:, x.shape[1] // 2:x.shape[1]]
|
||||
for layer in self.net:
|
||||
z1, z2 = layer(z1, z2)
|
||||
return torch.cat((z1, z2), dim=1)
|
||||
|
||||
|
||||
# =============================================================================
|
||||
|
||||
# =============================================================================
|
||||
@ -472,7 +377,8 @@ class Restormer_Decoder(nn.Module):
|
||||
|
||||
super(Restormer_Decoder, self).__init__()
|
||||
self.reduce_channel = nn.Conv2d(int(dim * 2), int(dim), kernel_size=1, bias=bias)
|
||||
self.encoder_level2 = nn.Sequential(*[TransformerBlock(dim=dim, num_heads=heads[1], ffn_expansion_factor=ffn_expansion_factor,
|
||||
self.encoder_level2 = nn.Sequential(
|
||||
*[TransformerBlock(dim=dim, num_heads=heads[1], ffn_expansion_factor=ffn_expansion_factor,
|
||||
bias=bias, LayerNorm_type=LayerNorm_type) for i in range(num_blocks[1])])
|
||||
self.output = nn.Sequential(
|
||||
nn.Conv2d(int(dim), int(dim) // 2, kernel_size=3,
|
||||
@ -499,5 +405,3 @@ if __name__ == '__main__':
|
||||
window_size = 8
|
||||
modelE = Restormer_Encoder().cuda()
|
||||
modelD = Restormer_Decoder().cuda()
|
||||
print(modelE)
|
||||
print(modelD)
|
||||
|
411
net_cddfuse.py
411
net_cddfuse.py
@ -1,411 +0,0 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import math
|
||||
import torch.nn.functional as F
|
||||
import torch.utils.checkpoint as checkpoint
|
||||
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
|
||||
from einops import rearrange
|
||||
|
||||
|
||||
def drop_path(x, drop_prob: float = 0., training: bool = False):
|
||||
"""
|
||||
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
||||
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
|
||||
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
|
||||
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
|
||||
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
|
||||
'survival rate' as the argument.
|
||||
"""
|
||||
if drop_prob == 0. or not training:
|
||||
return x
|
||||
keep_prob = 1 - drop_prob
|
||||
# work with diff dim tensors, not just 2D ConvNets
|
||||
shape = (x.shape[0],) + (1,) * (x.ndim - 1)
|
||||
random_tensor = keep_prob + \
|
||||
torch.rand(shape, dtype=x.dtype, device=x.device)
|
||||
random_tensor.floor_() # binarize
|
||||
output = x.div(keep_prob) * random_tensor
|
||||
return output
|
||||
|
||||
|
||||
class DropPath(nn.Module):
|
||||
"""
|
||||
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
||||
"""
|
||||
|
||||
def __init__(self, drop_prob=None):
|
||||
super(DropPath, self).__init__()
|
||||
self.drop_prob = drop_prob
|
||||
|
||||
def forward(self, x):
|
||||
return drop_path(x, self.drop_prob, self.training)
|
||||
|
||||
class AttentionBase(nn.Module):
|
||||
def __init__(self,
|
||||
dim,
|
||||
num_heads=8,
|
||||
qkv_bias=False,):
|
||||
super(AttentionBase, self).__init__()
|
||||
self.num_heads = num_heads
|
||||
head_dim = dim // num_heads
|
||||
self.scale = nn.Parameter(torch.ones(num_heads, 1, 1))
|
||||
self.qkv1 = nn.Conv2d(dim, dim*3, kernel_size=1, bias=qkv_bias)
|
||||
self.qkv2 = nn.Conv2d(dim*3, dim*3, kernel_size=3, padding=1, bias=qkv_bias)
|
||||
self.proj = nn.Conv2d(dim, dim, kernel_size=1, bias=qkv_bias)
|
||||
|
||||
def forward(self, x):
|
||||
# [batch_size, num_patches + 1, total_embed_dim]
|
||||
b, c, h, w = x.shape
|
||||
qkv = self.qkv2(self.qkv1(x))
|
||||
q, k, v = qkv.chunk(3, dim=1)
|
||||
q = rearrange(q, 'b (head c) h w -> b head c (h w)',
|
||||
head=self.num_heads)
|
||||
k = rearrange(k, 'b (head c) h w -> b head c (h w)',
|
||||
head=self.num_heads)
|
||||
v = rearrange(v, 'b (head c) h w -> b head c (h w)',
|
||||
head=self.num_heads)
|
||||
q = torch.nn.functional.normalize(q, dim=-1)
|
||||
k = torch.nn.functional.normalize(k, dim=-1)
|
||||
# transpose: -> [batch_size, num_heads, embed_dim_per_head, num_patches + 1]
|
||||
# @: multiply -> [batch_size, num_heads, num_patches + 1, num_patches + 1]
|
||||
attn = (q @ k.transpose(-2, -1)) * self.scale
|
||||
attn = attn.softmax(dim=-1)
|
||||
|
||||
out = (attn @ v)
|
||||
|
||||
out = rearrange(out, 'b head c (h w) -> b (head c) h w',
|
||||
head=self.num_heads, h=h, w=w)
|
||||
|
||||
out = self.proj(out)
|
||||
return out
|
||||
|
||||
class Mlp(nn.Module):
|
||||
"""
|
||||
MLP as used in Vision Transformer, MLP-Mixer and related networks
|
||||
"""
|
||||
def __init__(self,
|
||||
in_features,
|
||||
hidden_features=None,
|
||||
ffn_expansion_factor = 2,
|
||||
bias = False):
|
||||
super().__init__()
|
||||
hidden_features = int(in_features*ffn_expansion_factor)
|
||||
|
||||
self.project_in = nn.Conv2d(
|
||||
in_features, hidden_features*2, kernel_size=1, bias=bias)
|
||||
|
||||
self.dwconv = nn.Conv2d(hidden_features*2, hidden_features*2, kernel_size=3,
|
||||
stride=1, padding=1, groups=hidden_features, bias=bias)
|
||||
|
||||
self.project_out = nn.Conv2d(
|
||||
hidden_features, in_features, kernel_size=1, bias=bias)
|
||||
def forward(self, x):
|
||||
x = self.project_in(x)
|
||||
x1, x2 = self.dwconv(x).chunk(2, dim=1)
|
||||
x = F.gelu(x1) * x2
|
||||
x = self.project_out(x)
|
||||
return x
|
||||
|
||||
class BaseFeatureExtraction(nn.Module):
|
||||
def __init__(self,
|
||||
dim,
|
||||
num_heads,
|
||||
ffn_expansion_factor=1.,
|
||||
qkv_bias=False,):
|
||||
super(BaseFeatureExtraction, self).__init__()
|
||||
self.norm1 = LayerNorm(dim, 'WithBias')
|
||||
|
||||
# https://zhuanlan.zhihu.com/p/444887088#:~:text=%E5%9C%A8%E6%9C%AC%E6%96%87%E4%B8%AD%EF%BC%8C%E6%88%91%E4%BB%AC%E6%8F%90%E5%87%BA%E4%BA%86
|
||||
self.attn = AttentionBase(dim, num_heads=num_heads, qkv_bias=qkv_bias,)
|
||||
self.norm2 = LayerNorm(dim, 'WithBias')
|
||||
self.mlp = Mlp(in_features=dim,
|
||||
ffn_expansion_factor=ffn_expansion_factor,)
|
||||
def forward(self, x):
|
||||
x = x + self.attn(self.norm1(x))
|
||||
x = x + self.mlp(self.norm2(x))
|
||||
return x
|
||||
|
||||
|
||||
class InvertedResidualBlock(nn.Module):
|
||||
def __init__(self, inp, oup, expand_ratio):
|
||||
super(InvertedResidualBlock, self).__init__()
|
||||
hidden_dim = int(inp * expand_ratio)
|
||||
self.bottleneckBlock = nn.Sequential(
|
||||
# pw
|
||||
nn.Conv2d(inp, hidden_dim, 1, bias=False),
|
||||
# nn.BatchNorm2d(hidden_dim),
|
||||
nn.ReLU6(inplace=True),
|
||||
# dw
|
||||
nn.ReflectionPad2d(1),
|
||||
nn.Conv2d(hidden_dim, hidden_dim, 3, groups=hidden_dim, bias=False),
|
||||
# nn.BatchNorm2d(hidden_dim),
|
||||
nn.ReLU6(inplace=True),
|
||||
# pw-linear
|
||||
nn.Conv2d(hidden_dim, oup, 1, bias=False),
|
||||
# nn.BatchNorm2d(oup),
|
||||
)
|
||||
def forward(self, x):
|
||||
return self.bottleneckBlock(x)
|
||||
|
||||
class DetailNode(nn.Module):
|
||||
def __init__(self):
|
||||
super(DetailNode, self).__init__()
|
||||
# Scale is Ax + b, i.e. affine transformation
|
||||
self.theta_phi = InvertedResidualBlock(inp=32, oup=32, expand_ratio=2)
|
||||
self.theta_rho = InvertedResidualBlock(inp=32, oup=32, expand_ratio=2)
|
||||
self.theta_eta = InvertedResidualBlock(inp=32, oup=32, expand_ratio=2)
|
||||
self.shffleconv = nn.Conv2d(64, 64, kernel_size=1,
|
||||
stride=1, padding=0, bias=True)
|
||||
def separateFeature(self, x):
|
||||
z1, z2 = x[:, :x.shape[1]//2], x[:, x.shape[1]//2:x.shape[1]]
|
||||
return z1, z2
|
||||
def forward(self, z1, z2):
|
||||
z1, z2 = self.separateFeature(
|
||||
self.shffleconv(torch.cat((z1, z2), dim=1)))
|
||||
z2 = z2 + self.theta_phi(z1)
|
||||
z1 = z1 * torch.exp(self.theta_rho(z2)) + self.theta_eta(z2)
|
||||
return z1, z2
|
||||
|
||||
class DetailFeatureExtraction(nn.Module):
|
||||
def __init__(self, num_layers=3):
|
||||
super(DetailFeatureExtraction, self).__init__()
|
||||
INNmodules = [DetailNode() for _ in range(num_layers)]
|
||||
self.net = nn.Sequential(*INNmodules)
|
||||
def forward(self, x):
|
||||
z1, z2 = x[:, :x.shape[1]//2], x[:, x.shape[1]//2:x.shape[1]]
|
||||
for layer in self.net:
|
||||
z1, z2 = layer(z1, z2)
|
||||
return torch.cat((z1, z2), dim=1)
|
||||
|
||||
if __name__ == '__main__':
|
||||
x = torch.randn(1, 64, 256, 256)
|
||||
model = DetailFeatureExtraction(3)
|
||||
print(model(x).shape)
|
||||
|
||||
|
||||
# =============================================================================
|
||||
|
||||
# =============================================================================
|
||||
import numbers
|
||||
##########################################################################
|
||||
## Layer Norm
|
||||
def to_3d(x):
|
||||
return rearrange(x, 'b c h w -> b (h w) c')
|
||||
|
||||
|
||||
def to_4d(x, h, w):
|
||||
return rearrange(x, 'b (h w) c -> b c h w', h=h, w=w)
|
||||
|
||||
|
||||
class BiasFree_LayerNorm(nn.Module):
|
||||
def __init__(self, normalized_shape):
|
||||
super(BiasFree_LayerNorm, self).__init__()
|
||||
if isinstance(normalized_shape, numbers.Integral):
|
||||
normalized_shape = (normalized_shape,)
|
||||
normalized_shape = torch.Size(normalized_shape)
|
||||
|
||||
assert len(normalized_shape) == 1
|
||||
|
||||
self.weight = nn.Parameter(torch.ones(normalized_shape))
|
||||
self.normalized_shape = normalized_shape
|
||||
|
||||
def forward(self, x):
|
||||
sigma = x.var(-1, keepdim=True, unbiased=False)
|
||||
return x / torch.sqrt(sigma+1e-5) * self.weight
|
||||
|
||||
|
||||
class WithBias_LayerNorm(nn.Module):
|
||||
def __init__(self, normalized_shape):
|
||||
super(WithBias_LayerNorm, self).__init__()
|
||||
if isinstance(normalized_shape, numbers.Integral):
|
||||
normalized_shape = (normalized_shape,)
|
||||
normalized_shape = torch.Size(normalized_shape)
|
||||
|
||||
assert len(normalized_shape) == 1
|
||||
|
||||
self.weight = nn.Parameter(torch.ones(normalized_shape))
|
||||
self.bias = nn.Parameter(torch.zeros(normalized_shape))
|
||||
self.normalized_shape = normalized_shape
|
||||
|
||||
def forward(self, x):
|
||||
mu = x.mean(-1, keepdim=True)
|
||||
sigma = x.var(-1, keepdim=True, unbiased=False)
|
||||
return (x - mu) / torch.sqrt(sigma+1e-5) * self.weight + self.bias
|
||||
|
||||
class LayerNorm(nn.Module):
|
||||
def __init__(self, dim, LayerNorm_type):
|
||||
super(LayerNorm, self).__init__()
|
||||
if LayerNorm_type == 'BiasFree':
|
||||
self.body = BiasFree_LayerNorm(dim)
|
||||
else:
|
||||
self.body = WithBias_LayerNorm(dim)
|
||||
|
||||
def forward(self, x):
|
||||
h, w = x.shape[-2:]
|
||||
return to_4d(self.body(to_3d(x)), h, w)
|
||||
|
||||
##########################################################################
|
||||
## Gated-Dconv Feed-Forward Network (GDFN)
|
||||
class FeedForward(nn.Module):
|
||||
def __init__(self, dim, ffn_expansion_factor, bias):
|
||||
super(FeedForward, self).__init__()
|
||||
|
||||
hidden_features = int(dim*ffn_expansion_factor)
|
||||
|
||||
self.project_in = nn.Conv2d(
|
||||
dim, hidden_features*2, kernel_size=1, bias=bias)
|
||||
|
||||
self.dwconv = nn.Conv2d(hidden_features*2, hidden_features*2, kernel_size=3,
|
||||
stride=1, padding=1, groups=hidden_features*2, bias=bias)
|
||||
|
||||
self.project_out = nn.Conv2d(
|
||||
hidden_features, dim, kernel_size=1, bias=bias)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.project_in(x)
|
||||
x1, x2 = self.dwconv(x).chunk(2, dim=1)
|
||||
x = F.gelu(x1) * x2
|
||||
x = self.project_out(x)
|
||||
return x
|
||||
|
||||
|
||||
##########################################################################
|
||||
## Multi-DConv Head Transposed Self-Attention (MDTA)
|
||||
class Attention(nn.Module):
|
||||
def __init__(self, dim, num_heads, bias):
|
||||
super(Attention, self).__init__()
|
||||
self.num_heads = num_heads
|
||||
self.temperature = nn.Parameter(torch.ones(num_heads, 1, 1))
|
||||
|
||||
self.qkv = nn.Conv2d(dim, dim*3, kernel_size=1, bias=bias)
|
||||
self.qkv_dwconv = nn.Conv2d(
|
||||
dim*3, dim*3, kernel_size=3, stride=1, padding=1, groups=dim*3, bias=bias)
|
||||
self.project_out = nn.Conv2d(dim, dim, kernel_size=1, bias=bias)
|
||||
|
||||
def forward(self, x):
|
||||
b, c, h, w = x.shape
|
||||
|
||||
qkv = self.qkv_dwconv(self.qkv(x))
|
||||
q, k, v = qkv.chunk(3, dim=1)
|
||||
|
||||
q = rearrange(q, 'b (head c) h w -> b head c (h w)',
|
||||
head=self.num_heads)
|
||||
k = rearrange(k, 'b (head c) h w -> b head c (h w)',
|
||||
head=self.num_heads)
|
||||
v = rearrange(v, 'b (head c) h w -> b head c (h w)',
|
||||
head=self.num_heads)
|
||||
|
||||
q = torch.nn.functional.normalize(q, dim=-1)
|
||||
k = torch.nn.functional.normalize(k, dim=-1)
|
||||
|
||||
attn = (q @ k.transpose(-2, -1)) * self.temperature
|
||||
attn = attn.softmax(dim=-1)
|
||||
|
||||
out = (attn @ v)
|
||||
|
||||
out = rearrange(out, 'b head c (h w) -> b (head c) h w',
|
||||
head=self.num_heads, h=h, w=w)
|
||||
|
||||
out = self.project_out(out)
|
||||
return out
|
||||
|
||||
|
||||
##########################################################################
|
||||
class TransformerBlock(nn.Module):
|
||||
def __init__(self, dim, num_heads, ffn_expansion_factor, bias, LayerNorm_type):
|
||||
super(TransformerBlock, self).__init__()
|
||||
|
||||
self.norm1 = LayerNorm(dim, LayerNorm_type)
|
||||
self.attn = Attention(dim, num_heads, bias)
|
||||
self.norm2 = LayerNorm(dim, LayerNorm_type)
|
||||
self.ffn = FeedForward(dim, ffn_expansion_factor, bias)
|
||||
|
||||
def forward(self, x):
|
||||
x = x + self.attn(self.norm1(x))
|
||||
x = x + self.ffn(self.norm2(x))
|
||||
|
||||
return x
|
||||
|
||||
|
||||
##########################################################################
|
||||
## Overlapped image patch embedding with 3x3 Conv
|
||||
class OverlapPatchEmbed(nn.Module):
|
||||
def __init__(self, in_c=3, embed_dim=48, bias=False):
|
||||
super(OverlapPatchEmbed, self).__init__()
|
||||
|
||||
self.proj = nn.Conv2d(in_c, embed_dim, kernel_size=3,
|
||||
stride=1, padding=1, bias=bias)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.proj(x)
|
||||
return x
|
||||
|
||||
|
||||
class Restormer_Encoder(nn.Module):
|
||||
def __init__(self,
|
||||
inp_channels=1,
|
||||
out_channels=1,
|
||||
dim=64,
|
||||
num_blocks=[4, 4],
|
||||
heads=[8, 8, 8],
|
||||
ffn_expansion_factor=2,
|
||||
bias=False,
|
||||
LayerNorm_type='WithBias',
|
||||
):
|
||||
|
||||
super(Restormer_Encoder, self).__init__()
|
||||
|
||||
self.patch_embed = OverlapPatchEmbed(inp_channels, dim)
|
||||
|
||||
self.encoder_level1 = nn.Sequential(*[TransformerBlock(dim=dim, num_heads=heads[0], ffn_expansion_factor=ffn_expansion_factor,
|
||||
bias=bias, LayerNorm_type=LayerNorm_type) for i in range(num_blocks[0])])
|
||||
self.baseFeature = BaseFeatureExtraction(dim=dim, num_heads = heads[2])
|
||||
self.detailFeature = DetailFeatureExtraction()
|
||||
|
||||
def forward(self, inp_img):
|
||||
inp_enc_level1 = self.patch_embed(inp_img)
|
||||
out_enc_level1 = self.encoder_level1(inp_enc_level1)
|
||||
base_feature = self.baseFeature(out_enc_level1)
|
||||
detail_feature = self.detailFeature(out_enc_level1)
|
||||
return base_feature, detail_feature, out_enc_level1
|
||||
|
||||
class Restormer_Decoder(nn.Module):
|
||||
def __init__(self,
|
||||
inp_channels=1,
|
||||
out_channels=1,
|
||||
dim=64,
|
||||
num_blocks=[4, 4],
|
||||
heads=[8, 8, 8],
|
||||
ffn_expansion_factor=2,
|
||||
bias=False,
|
||||
LayerNorm_type='WithBias',
|
||||
):
|
||||
|
||||
super(Restormer_Decoder, self).__init__()
|
||||
self.reduce_channel = nn.Conv2d(int(dim*2), int(dim), kernel_size=1, bias=bias)
|
||||
self.encoder_level2 = nn.Sequential(*[TransformerBlock(dim=dim, num_heads=heads[1], ffn_expansion_factor=ffn_expansion_factor,
|
||||
bias=bias, LayerNorm_type=LayerNorm_type) for i in range(num_blocks[1])])
|
||||
self.output = nn.Sequential(
|
||||
nn.Conv2d(int(dim), int(dim)//2, kernel_size=3,
|
||||
stride=1, padding=1, bias=bias),
|
||||
nn.LeakyReLU(),
|
||||
nn.Conv2d(int(dim)//2, out_channels, kernel_size=3,
|
||||
stride=1, padding=1, bias=bias),)
|
||||
self.sigmoid = nn.Sigmoid()
|
||||
def forward(self, inp_img, base_feature, detail_feature):
|
||||
out_enc_level0 = torch.cat((base_feature, detail_feature), dim=1)
|
||||
out_enc_level0 = self.reduce_channel(out_enc_level0)
|
||||
out_enc_level1 = self.encoder_level2(out_enc_level0)
|
||||
if inp_img is not None:
|
||||
out_enc_level1 = self.output(out_enc_level1) + inp_img
|
||||
else:
|
||||
out_enc_level1 = self.output(out_enc_level1)
|
||||
return self.sigmoid(out_enc_level1), out_enc_level0
|
||||
|
||||
if __name__ == '__main__':
|
||||
height = 128
|
||||
width = 128
|
||||
window_size = 8
|
||||
modelE = Restormer_Encoder().cuda()
|
||||
modelD = Restormer_Decoder().cuda()
|
||||
|
434
net_me.py
434
net_me.py
@ -1,434 +0,0 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import math
|
||||
import torch.nn.functional as F
|
||||
import torch.utils.checkpoint as checkpoint
|
||||
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
|
||||
from einops import rearrange
|
||||
|
||||
|
||||
def drop_path(x, drop_prob: float = 0., training: bool = False):
|
||||
if drop_prob == 0. or not training:
|
||||
return x
|
||||
keep_prob = 1 - drop_prob
|
||||
# work with diff dim tensors, not just 2D ConvNets
|
||||
shape = (x.shape[0],) + (1,) * (x.ndim - 1)
|
||||
random_tensor = keep_prob + \
|
||||
torch.rand(shape, dtype=x.dtype, device=x.device)
|
||||
random_tensor.floor_() # binarize
|
||||
output = x.div(keep_prob) * random_tensor
|
||||
return output
|
||||
|
||||
|
||||
class DropPath(nn.Module):
|
||||
"""
|
||||
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
||||
"""
|
||||
|
||||
def __init__(self, drop_prob=None):
|
||||
super(DropPath, self).__init__()
|
||||
self.drop_prob = drop_prob
|
||||
|
||||
def forward(self, x):
|
||||
return drop_path(x, self.drop_prob, self.training)
|
||||
|
||||
|
||||
# 改点,使用Pooling替换AttentionBase
|
||||
class Pooling(nn.Module):
|
||||
def __init__(self, kernel_size=3):
|
||||
super().__init__()
|
||||
self.pool = nn.AvgPool2d(
|
||||
kernel_size, stride=1, padding=kernel_size // 2)
|
||||
|
||||
def forward(self, x):
|
||||
return self.pool(x) - x
|
||||
|
||||
|
||||
class PoolMlp(nn.Module):
|
||||
"""
|
||||
实现基于1x1卷积的MLP模块。
|
||||
输入:形状为[B, C, H, W]的张量。
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
in_features,
|
||||
hidden_features=None,
|
||||
out_features=None,
|
||||
act_layer=nn.GELU,
|
||||
bias=False,
|
||||
drop=0.):
|
||||
"""
|
||||
初始化PoolMlp模块。
|
||||
|
||||
参数:
|
||||
in_features (int): 输入特征的数量。
|
||||
hidden_features (int, 可选): 隐藏层特征的数量。默认为None,设置为与in_features相同。
|
||||
out_features (int, 可选): 输出特征的数量。默认为None,设置为与in_features相同。
|
||||
act_layer (nn.Module, 可选): 使用的激活层。默认为nn.GELU。
|
||||
bias (bool, 可选): 是否在卷积层中包含偏置项。默认为False。
|
||||
drop (float, 可选): Dropout比率。默认为0。
|
||||
"""
|
||||
super().__init__()
|
||||
out_features = out_features or in_features
|
||||
hidden_features = hidden_features or in_features
|
||||
self.fc1 = nn.Conv2d(in_features, hidden_features, 1, bias=bias)
|
||||
self.act = act_layer()
|
||||
self.fc2 = nn.Conv2d(hidden_features, out_features, 1, bias=bias)
|
||||
self.drop = nn.Dropout(drop)
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
通过PoolMlp模块的前向传播。
|
||||
|
||||
参数:
|
||||
x (torch.Tensor): 形状为[B, C, H, W]的输入张量。
|
||||
|
||||
返回:
|
||||
torch.Tensor: 形状为[B, C, H, W]的输出张量。
|
||||
"""
|
||||
x = self.fc1(x) # (B, C, H, W) --> (B, C, H, W)
|
||||
x = self.act(x)
|
||||
x = self.drop(x)
|
||||
x = self.fc2(x) # (B, C, H, W) --> (B, C, H, W)
|
||||
x = self.drop(x)
|
||||
return x
|
||||
|
||||
|
||||
class BaseFeatureExtraction(nn.Module):
|
||||
def __init__(self, dim, pool_size=3, mlp_ratio=4.,
|
||||
act_layer=nn.GELU,
|
||||
# norm_layer=nn.LayerNorm,
|
||||
drop=0., drop_path=0.,
|
||||
use_layer_scale=True, layer_scale_init_value=1e-5):
|
||||
|
||||
super().__init__()
|
||||
|
||||
self.norm1 = LayerNorm(dim, 'WithBias')
|
||||
self.token_mixer = Pooling(kernel_size=pool_size) # vits是msa,MLPs是mlp,这个用pool来替代
|
||||
self.norm2 = LayerNorm(dim, 'WithBias')
|
||||
mlp_hidden_dim = int(dim * mlp_ratio)
|
||||
self.poolmlp = PoolMlp(in_features=dim, hidden_features=mlp_hidden_dim,
|
||||
act_layer=act_layer, drop=drop)
|
||||
|
||||
# The following two techniques are useful to train deep PoolFormers.
|
||||
self.drop_path = DropPath(drop_path) if drop_path > 0. \
|
||||
else nn.Identity()
|
||||
self.use_layer_scale = use_layer_scale
|
||||
|
||||
if use_layer_scale:
|
||||
self.layer_scale_1 = nn.Parameter(
|
||||
torch.ones(dim, dtype=torch.float32) * layer_scale_init_value)
|
||||
|
||||
self.layer_scale_2 = nn.Parameter(
|
||||
torch.ones(dim, dtype=torch.float32) * layer_scale_init_value)
|
||||
|
||||
def forward(self, x):
|
||||
if self.use_layer_scale:
|
||||
x = x + self.drop_path(
|
||||
self.layer_scale_1.unsqueeze(-1).unsqueeze(-1)
|
||||
* self.token_mixer(self.norm1(x)))
|
||||
x = x + self.drop_path(
|
||||
self.layer_scale_2.unsqueeze(-1).unsqueeze(-1)
|
||||
* self.poolmlp(self.norm2(x)))
|
||||
else:
|
||||
x = x + self.drop_path(self.token_mixer(self.norm1(x))) # 匹配cddfuse
|
||||
x = x + self.drop_path(self.poolmlp(self.norm2(x)))
|
||||
return x
|
||||
|
||||
|
||||
class InvertedResidualBlock(nn.Module):
|
||||
def __init__(self, inp, oup, expand_ratio):
|
||||
super(InvertedResidualBlock, self).__init__()
|
||||
hidden_dim = int(inp * expand_ratio)
|
||||
self.bottleneckBlock = nn.Sequential(
|
||||
# pw
|
||||
nn.Conv2d(inp, hidden_dim, 1, bias=False),
|
||||
# nn.BatchNorm2d(hidden_dim),
|
||||
nn.ReLU6(inplace=True),
|
||||
# dw
|
||||
nn.ReflectionPad2d(1),
|
||||
nn.Conv2d(hidden_dim, hidden_dim, 3, groups=hidden_dim, bias=False),
|
||||
# nn.BatchNorm2d(hidden_dim),
|
||||
nn.ReLU6(inplace=True),
|
||||
# pw-linear
|
||||
nn.Conv2d(hidden_dim, oup, 1, bias=False),
|
||||
# nn.BatchNorm2d(oup),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.bottleneckBlock(x)
|
||||
|
||||
|
||||
class DetailNode(nn.Module):
|
||||
|
||||
# <img src = "http://42.192.130.83:9000/picgo/imgs/小绿鲸英文文献阅读器_ELTITYqm5G.png" / > '
|
||||
def __init__(self):
|
||||
super(DetailNode, self).__init__()
|
||||
|
||||
self.theta_phi = InvertedResidualBlock(inp=32, oup=32, expand_ratio=2)
|
||||
self.theta_rho = InvertedResidualBlock(inp=32, oup=32, expand_ratio=2)
|
||||
self.theta_eta = InvertedResidualBlock(inp=32, oup=32, expand_ratio=2)
|
||||
self.shffleconv = nn.Conv2d(64, 64, kernel_size=1,
|
||||
stride=1, padding=0, bias=True)
|
||||
|
||||
def separateFeature(self, x):
|
||||
z1, z2 = x[:, :x.shape[1] // 2], x[:, x.shape[1] // 2:x.shape[1]]
|
||||
return z1, z2
|
||||
|
||||
def forward(self, z1, z2):
|
||||
z1, z2 = self.separateFeature(
|
||||
self.shffleconv(torch.cat((z1, z2), dim=1)))
|
||||
z2 = z2 + self.theta_phi(z1)
|
||||
z1 = z1 * torch.exp(self.theta_rho(z2)) + self.theta_eta(z2)
|
||||
return z1, z2
|
||||
|
||||
|
||||
class DetailFeatureExtraction(nn.Module):
|
||||
def __init__(self, num_layers=3):
|
||||
super(DetailFeatureExtraction, self).__init__()
|
||||
INNmodules = [DetailNode() for _ in range(num_layers)]
|
||||
self.net = nn.Sequential(*INNmodules)
|
||||
|
||||
def forward(self, x):
|
||||
z1, z2 = x[:, :x.shape[1] // 2], x[:, x.shape[1] // 2:x.shape[1]]
|
||||
for layer in self.net:
|
||||
z1, z2 = layer(z1, z2)
|
||||
return torch.cat((z1, z2), dim=1)
|
||||
|
||||
|
||||
# =============================================================================
|
||||
|
||||
# =============================================================================
|
||||
import numbers
|
||||
|
||||
|
||||
##########################################################################
|
||||
## Layer Norm
|
||||
def to_3d(x):
|
||||
return rearrange(x, 'b c h w -> b (h w) c')
|
||||
|
||||
|
||||
def to_4d(x, h, w):
|
||||
return rearrange(x, 'b (h w) c -> b c h w', h=h, w=w)
|
||||
|
||||
|
||||
class BiasFree_LayerNorm(nn.Module):
|
||||
def __init__(self, normalized_shape):
|
||||
super(BiasFree_LayerNorm, self).__init__()
|
||||
if isinstance(normalized_shape, numbers.Integral):
|
||||
normalized_shape = (normalized_shape,)
|
||||
normalized_shape = torch.Size(normalized_shape)
|
||||
|
||||
assert len(normalized_shape) == 1
|
||||
|
||||
self.weight = nn.Parameter(torch.ones(normalized_shape))
|
||||
self.normalized_shape = normalized_shape
|
||||
|
||||
def forward(self, x):
|
||||
sigma = x.var(-1, keepdim=True, unbiased=False)
|
||||
return x / torch.sqrt(sigma + 1e-5) * self.weight
|
||||
|
||||
|
||||
class WithBias_LayerNorm(nn.Module):
|
||||
def __init__(self, normalized_shape):
|
||||
super(WithBias_LayerNorm, self).__init__()
|
||||
if isinstance(normalized_shape, numbers.Integral):
|
||||
normalized_shape = (normalized_shape,)
|
||||
normalized_shape = torch.Size(normalized_shape)
|
||||
|
||||
assert len(normalized_shape) == 1
|
||||
|
||||
self.weight = nn.Parameter(torch.ones(normalized_shape))
|
||||
self.bias = nn.Parameter(torch.zeros(normalized_shape))
|
||||
self.normalized_shape = normalized_shape
|
||||
|
||||
def forward(self, x):
|
||||
mu = x.mean(-1, keepdim=True)
|
||||
sigma = x.var(-1, keepdim=True, unbiased=False)
|
||||
return (x - mu) / torch.sqrt(sigma + 1e-5) * self.weight + self.bias
|
||||
|
||||
|
||||
class LayerNorm(nn.Module):
|
||||
def __init__(self, dim, LayerNorm_type):
|
||||
super(LayerNorm, self).__init__()
|
||||
if LayerNorm_type == 'BiasFree':
|
||||
self.body = BiasFree_LayerNorm(dim)
|
||||
else:
|
||||
self.body = WithBias_LayerNorm(dim)
|
||||
|
||||
def forward(self, x):
|
||||
h, w = x.shape[-2:]
|
||||
return to_4d(self.body(to_3d(x)), h, w)
|
||||
|
||||
|
||||
##########################################################################
|
||||
## Gated-Dconv Feed-Forward Network (GDFN)
|
||||
class FeedForward(nn.Module):
|
||||
def __init__(self, dim, ffn_expansion_factor, bias):
|
||||
super(FeedForward, self).__init__()
|
||||
|
||||
hidden_features = int(dim * ffn_expansion_factor)
|
||||
|
||||
self.project_in = nn.Conv2d(
|
||||
dim, hidden_features * 2, kernel_size=1, bias=bias)
|
||||
|
||||
self.dwconv = nn.Conv2d(hidden_features * 2, hidden_features * 2, kernel_size=3,
|
||||
stride=1, padding=1, groups=hidden_features * 2, bias=bias)
|
||||
|
||||
self.project_out = nn.Conv2d(
|
||||
hidden_features, dim, kernel_size=1, bias=bias)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.project_in(x)
|
||||
x1, x2 = self.dwconv(x).chunk(2, dim=1)
|
||||
x = F.gelu(x1) * x2
|
||||
x = self.project_out(x)
|
||||
return x
|
||||
|
||||
|
||||
##########################################################################
|
||||
## Multi-DConv Head Transposed Self-Attention (MDTA)
|
||||
class Attention(nn.Module):
|
||||
def __init__(self, dim, num_heads, bias):
|
||||
super(Attention, self).__init__()
|
||||
self.num_heads = num_heads
|
||||
self.temperature = nn.Parameter(torch.ones(num_heads, 1, 1))
|
||||
|
||||
self.qkv = nn.Conv2d(dim, dim * 3, kernel_size=1, bias=bias)
|
||||
self.qkv_dwconv = nn.Conv2d(
|
||||
dim * 3, dim * 3, kernel_size=3, stride=1, padding=1, groups=dim * 3, bias=bias)
|
||||
self.project_out = nn.Conv2d(dim, dim, kernel_size=1, bias=bias)
|
||||
|
||||
def forward(self, x):
|
||||
b, c, h, w = x.shape
|
||||
|
||||
qkv = self.qkv_dwconv(self.qkv(x))
|
||||
q, k, v = qkv.chunk(3, dim=1)
|
||||
|
||||
q = rearrange(q, 'b (head c) h w -> b head c (h w)',
|
||||
head=self.num_heads)
|
||||
k = rearrange(k, 'b (head c) h w -> b head c (h w)',
|
||||
head=self.num_heads)
|
||||
v = rearrange(v, 'b (head c) h w -> b head c (h w)',
|
||||
head=self.num_heads)
|
||||
|
||||
q = torch.nn.functional.normalize(q, dim=-1)
|
||||
k = torch.nn.functional.normalize(k, dim=-1)
|
||||
|
||||
attn = (q @ k.transpose(-2, -1)) * self.temperature
|
||||
attn = attn.softmax(dim=-1)
|
||||
|
||||
out = (attn @ v)
|
||||
|
||||
out = rearrange(out, 'b head c (h w) -> b (head c) h w',
|
||||
head=self.num_heads, h=h, w=w)
|
||||
|
||||
out = self.project_out(out)
|
||||
return out
|
||||
|
||||
|
||||
##########################################################################
|
||||
class TransformerBlock(nn.Module):
|
||||
def __init__(self, dim, num_heads, ffn_expansion_factor, bias, LayerNorm_type):
|
||||
super(TransformerBlock, self).__init__()
|
||||
|
||||
self.norm1 = LayerNorm(dim, LayerNorm_type)
|
||||
self.attn = Attention(dim, num_heads, bias)
|
||||
self.norm2 = LayerNorm(dim, LayerNorm_type)
|
||||
self.ffn = FeedForward(dim, ffn_expansion_factor, bias)
|
||||
|
||||
def forward(self, x):
|
||||
x = x + self.attn(self.norm1(x))
|
||||
x = x + self.ffn(self.norm2(x))
|
||||
|
||||
return x
|
||||
|
||||
|
||||
##########################################################################
|
||||
## Overlapped image patch embedding with 3x3 Conv
|
||||
class OverlapPatchEmbed(nn.Module):
|
||||
def __init__(self, in_c=3, embed_dim=48, bias=False):
|
||||
super(OverlapPatchEmbed, self).__init__()
|
||||
|
||||
self.proj = nn.Conv2d(in_c, embed_dim, kernel_size=3,
|
||||
stride=1, padding=1, bias=bias)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.proj(x)
|
||||
return x
|
||||
|
||||
|
||||
class Restormer_Encoder(nn.Module):
|
||||
def __init__(self,
|
||||
inp_channels=1,
|
||||
out_channels=1,
|
||||
dim=64,
|
||||
num_blocks=[4, 4],
|
||||
heads=[8, 8, 8],
|
||||
ffn_expansion_factor=2,
|
||||
bias=False,
|
||||
LayerNorm_type='WithBias',
|
||||
):
|
||||
super(Restormer_Encoder, self).__init__()
|
||||
|
||||
self.patch_embed = OverlapPatchEmbed(inp_channels, dim)
|
||||
|
||||
self.encoder_level1 = nn.Sequential(
|
||||
*[TransformerBlock(dim=dim, num_heads=heads[0], ffn_expansion_factor=ffn_expansion_factor,
|
||||
bias=bias, LayerNorm_type=LayerNorm_type) for i in range(num_blocks[0])])
|
||||
self.baseFeature = BaseFeatureExtraction(dim=dim)
|
||||
|
||||
self.detailFeature = DetailFeatureExtraction()
|
||||
|
||||
def forward(self, inp_img):
|
||||
inp_enc_level1 = self.patch_embed(inp_img)
|
||||
out_enc_level1 = self.encoder_level1(inp_enc_level1)
|
||||
base_feature = self.baseFeature(out_enc_level1)
|
||||
detail_feature = self.detailFeature(out_enc_level1)
|
||||
return base_feature, detail_feature, out_enc_level1
|
||||
|
||||
|
||||
class Restormer_Decoder(nn.Module):
|
||||
def __init__(self,
|
||||
inp_channels=1,
|
||||
out_channels=1,
|
||||
dim=64,
|
||||
num_blocks=[4, 4],
|
||||
heads=[8, 8, 8],
|
||||
ffn_expansion_factor=2,
|
||||
bias=False,
|
||||
LayerNorm_type='WithBias',
|
||||
):
|
||||
|
||||
super(Restormer_Decoder, self).__init__()
|
||||
self.reduce_channel = nn.Conv2d(int(dim * 2), int(dim), kernel_size=1, bias=bias)
|
||||
self.encoder_level2 = nn.Sequential(
|
||||
*[TransformerBlock(dim=dim, num_heads=heads[1], ffn_expansion_factor=ffn_expansion_factor,
|
||||
bias=bias, LayerNorm_type=LayerNorm_type) for i in range(num_blocks[1])])
|
||||
self.output = nn.Sequential(
|
||||
nn.Conv2d(int(dim), int(dim) // 2, kernel_size=3,
|
||||
stride=1, padding=1, bias=bias),
|
||||
nn.LeakyReLU(),
|
||||
nn.Conv2d(int(dim) // 2, out_channels, kernel_size=3,
|
||||
stride=1, padding=1, bias=bias), )
|
||||
self.sigmoid = nn.Sigmoid()
|
||||
|
||||
def forward(self, inp_img, base_feature, detail_feature):
|
||||
out_enc_level0 = torch.cat((base_feature, detail_feature), dim=1)
|
||||
out_enc_level0 = self.reduce_channel(out_enc_level0)
|
||||
out_enc_level1 = self.encoder_level2(out_enc_level0)
|
||||
if inp_img is not None:
|
||||
out_enc_level1 = self.output(out_enc_level1) + inp_img
|
||||
else:
|
||||
out_enc_level1 = self.output(out_enc_level1)
|
||||
return self.sigmoid(out_enc_level1), out_enc_level0
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
height = 128
|
||||
width = 128
|
||||
window_size = 8
|
||||
modelE = Restormer_Encoder().cuda()
|
||||
modelD = Restormer_Decoder().cuda()
|
||||
print(modelE)
|
||||
print(modelD)
|
@ -1,5 +0,0 @@
|
||||
|
||||
scipy==1.9.3
|
||||
scikit-image==0.19.2
|
||||
scikit-learn==1.1.3
|
||||
tqdm==4.62.0
|
@ -13,13 +13,14 @@ logging.basicConfig(level=logging.CRITICAL)
|
||||
|
||||
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
||||
ckpt_path= r"/home/star/whaiDir/PFCFuse/models/PFCFusion10-05-20-46.pth"
|
||||
ckpt_path= r"PFCFuse_IVF.pth"
|
||||
|
||||
for dataset_name in ["TNO","RoadScene"]:
|
||||
|
||||
for dataset_name in ["TNO"]:
|
||||
print("\n"*2+"="*80)
|
||||
model_name="PFCFuse "
|
||||
print("The test result of "+dataset_name+' :')
|
||||
test_folder=os.path.join('/home/star/whaiDir/CDDFuse/test_img/',dataset_name)
|
||||
test_folder=os.path.join('test_img',dataset_name)
|
||||
test_out_folder=os.path.join('test_result',dataset_name)
|
||||
|
||||
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
||||
|
41
test_shell.py
Normal file
41
test_shell.py
Normal file
@ -0,0 +1,41 @@
|
||||
import os
|
||||
import subprocess
|
||||
import datetime
|
||||
import sys
|
||||
|
||||
# 定义命令
|
||||
command = "/home/star/anaconda3/envs/pfcfuse/bin/python /home/star/whaiDir/PFCFuse/test_IVF.py"
|
||||
|
||||
# 获取当前时间并格式化为文件名
|
||||
current_time = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
||||
output_file = f"/home/star/whaiDir/PFCFuse/logs/ans_log_{current_time}.log"
|
||||
|
||||
try:
|
||||
# 打开文件用于写入
|
||||
with open(output_file, 'w') as log_file:
|
||||
# 运行命令
|
||||
process = subprocess.Popen(command.split(), stdout=subprocess.PIPE, stderr=subprocess.STDOUT,
|
||||
universal_newlines=True)
|
||||
|
||||
# 循环读取输出
|
||||
for line in process.stdout:
|
||||
# 同时打印到控制台和写入文件
|
||||
print(line.strip())
|
||||
log_file.write(line)
|
||||
log_file.flush() # 确保立即写入文件
|
||||
|
||||
# 等待命令完成
|
||||
process.wait()
|
||||
|
||||
# 检查返回码
|
||||
if process.returncode != 0:
|
||||
raise subprocess.CalledProcessError(process.returncode, command)
|
||||
|
||||
# 如果命令成功执行,则打印确认信息
|
||||
print(f"Command executed successfully. Output has been written to {output_file}")
|
||||
|
||||
except subprocess.CalledProcessError as e:
|
||||
# 如果命令执行失败,则删除文件并打印错误信息
|
||||
if os.path.exists(output_file):
|
||||
os.remove(output_file)
|
||||
print(f"Command failed with return code {e.returncode}. No log file was created.")
|
33
train.py
33
train.py
@ -34,7 +34,7 @@ criteria_fusion = Fusionloss()
|
||||
model_str = 'PFCFuse'
|
||||
|
||||
# . Set the hyper-parameters for training
|
||||
num_epochs = 60 # total epoch
|
||||
num_epochs = 120 # total epoch
|
||||
epoch_gap = 40 # epoches of Phase I
|
||||
|
||||
lr = 1e-4
|
||||
@ -57,28 +57,6 @@ clip_grad_norm_value = 0.01
|
||||
optim_step = 20
|
||||
optim_gamma = 0.5
|
||||
|
||||
# 打印所有参数
|
||||
print(f"Model: {model_str}")
|
||||
print(f"Number of epochs: {num_epochs}")
|
||||
print(f"Epoch gap: {epoch_gap}")
|
||||
print(f"Learning rate: {lr}")
|
||||
print(f"Weight decay: {weight_decay}")
|
||||
print(f"Batch size: {batch_size}")
|
||||
print(f"GPU number: {GPU_number}")
|
||||
|
||||
print(f"Coefficient of MSE loss VF: {coeff_mse_loss_VF}")
|
||||
print(f"Coefficient of MSE loss IF: {coeff_mse_loss_IF}")
|
||||
print(f"Coefficient of RMI loss VF: {coeff_rmi_loss_VF}")
|
||||
print(f"Coefficient of RMI loss IF: {coeff_rmi_loss_IF}")
|
||||
print(f"Coefficient of Cosine loss VF: {coeff_cos_loss_VF}")
|
||||
print(f"Coefficient of Cosine loss IF: {coeff_cos_loss_IF}")
|
||||
print(f"Coefficient of Decomposition loss: {coeff_decomp}")
|
||||
print(f"Coefficient of Total Variation loss: {coeff_tv}")
|
||||
|
||||
print(f"Clip gradient norm value: {clip_grad_norm_value}")
|
||||
print(f"Optimization step: {optim_step}")
|
||||
print(f"Optimization gamma: {optim_gamma}")
|
||||
|
||||
|
||||
# Model
|
||||
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
||||
@ -109,7 +87,7 @@ Loss_ssim = kornia.losses.SSIM(11, reduction='mean')
|
||||
HuberLoss = nn.HuberLoss()
|
||||
|
||||
# data loader
|
||||
trainloader = DataLoader(H5Dataset(r"/home/star/whaiDir/CDDFuse/data/MSRS_train_imgsize_128_stride_200.h5"),
|
||||
trainloader = DataLoader(H5Dataset(r"data/MSRS_train_imgsize_128_stride_200.h5"),
|
||||
batch_size=batch_size,
|
||||
shuffle=True,
|
||||
num_workers=0)
|
||||
@ -222,20 +200,17 @@ for epoch in range(num_epochs):
|
||||
time_left = datetime.timedelta(seconds=batches_left * (time.time() - prev_time))
|
||||
epoch_time = time.time() - prev_time
|
||||
prev_time = time.time()
|
||||
if step % 100 == 0:
|
||||
sys.stdout.write(
|
||||
"\r[Epoch %d/%d] [Batch %d/%d] [loss: %f] ETA: %.10s"
|
||||
"\r[Epoch %d/%d] [Batch %d/%d] [loss: %f]"
|
||||
% (
|
||||
epoch,
|
||||
num_epochs,
|
||||
i,
|
||||
len(loader['train']),
|
||||
loss.item(),
|
||||
time_left,
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
# adjust the learning rate
|
||||
|
||||
scheduler1.step()
|
||||
@ -260,5 +235,5 @@ if True:
|
||||
'BaseFuseLayer': BaseFuseLayer.state_dict(),
|
||||
'DetailFuseLayer': DetailFuseLayer.state_dict(),
|
||||
}
|
||||
torch.save(checkpoint, os.path.join("models/whaiFusion"+timestamp+'.pth'))
|
||||
torch.save(checkpoint, os.path.join("models/PFCFusion"+timestamp+'.pth'))
|
||||
|
||||
|
15
trainExe.py
15
trainExe.py
@ -1,15 +0,0 @@
|
||||
import subprocess
|
||||
import datetime
|
||||
|
||||
# 定义命令
|
||||
command = "/home/star/anaconda3/envs/pfcfuse/bin/python /home/star/whaiDir/PFCFuse/train.py"
|
||||
|
||||
# 获取当前时间并格式化为文件名
|
||||
current_time = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
||||
output_file = f"/home/star/whaiDir/PFCFuse/logs/log_{current_time}.log"
|
||||
|
||||
# 运行命令并将输出重定向到文件
|
||||
with open(output_file, 'w') as file:
|
||||
subprocess.run(command.split(), stdout=file, stderr=subprocess.STDOUT)
|
||||
|
||||
print(f"Command output has been written to {output_file}")
|
Loading…
Reference in New Issue
Block a user