# PFCFuse: A Poolformer and CNN fusion network for Infrared-Visible Image Fusion The implementation of our paper "PFCFuse: A Poolformer and CNN fusion network for Infrared-Visible Image Fusion". ## Recommended Environment: python=3.8\ torch=1.12.1+cu113\ scipy=1.9.3\ scikit-image=0.19.2\ scikit-learn=1.1.3\ tqdm=4.62.0 ## Network Architecture: Our PFCFuse is implemented in ``net.py``. ## Training: ### Data preprocessing Run ``` python dataprocessing.py ``` ### Model training Run ``` python train.py ``` ## Testing: Run ``` python test_IVF.py ``` ## 相关工作 ``` @inproceedings{zhao2023cddfuse, title={Cddfuse: Correlation-driven dual-branch feature decomposition for multi-modality image fusion}, author={Zhao, Zixiang and Bai, Haowen and Zhang, Jiangshe and Zhang, Yulun and Xu, Shuang and Lin, Zudi and Timofte, Radu and Van Gool, Luc}, booktitle={Proceedings of the IEEE/CVF conference on computer vision and pattern recognition}, pages={5906--5916}, year={2023} } ```