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SCSA: Exploring the Synergistic Effects Between
Spatial and Channel Attention

Yunzhong Si, Huiying Xu, Xinzhong Zhu, Wenhao Zhang, Yao Dong, Yuxing Chen, Hongbo Li

Abstract—Channel and spatial attentions have respectively
brought significant improvements in extracting feature dependen-
cies and spatial structure relations for various downstream vision
tasks. While their combination is more beneficial for leveraging
their individual strengths, the synergy between channel and
spatial attentions has not been fully explored, lacking in fully
harness the synergistic potential of multi-semantic information
for feature guidance and mitigation of semantic disparities. Our
study attempts to reveal the synergistic relationship between spa-
tial and channel attention at multiple semantic levels, proposing a
novel Spatial and Channel Synergistic Attention module (SCSA).
Our SCSA consists of two parts: the Shareable Multi-Semantic
Spatial Attention (SMSA) and the Progressive Channel-wise Self-
Attention (PCSA). SMSA integrates multi-semantic information
and utilizes a progressive compression strategy to inject dis-
criminative spatial priors into PCSA’s channel self-attention,
effectively guiding channel recalibration. Additionally, the robust
feature interactions based on the self-attention mechanism in
PCSA further mitigate the disparities in multi-semantic infor-
mation among different sub-features within SMSA. We conduct
extensive experiments on seven benchmark datasets, including
classification on ImageNet-1K, object detection on MSCOCO
2017, segmentation on ADE20K, and four other complex scene
detection datasets. Our results demonstrate that our proposed
SCSA not only surpasses the current state-of-the-art attention
but also exhibits enhanced generalization capabilities across
various task scenarios. The code and models are available at:
https://github.com/HZAI-ZJNU/SCSA.

Index Terms—Multi-semantic information, semantic disparity,
spatial attention, channel attention, synergistic effect.

I. INTRODUCTION

Attention mechanisms, by enhancing representations of in-
terest, facilitate the learning of more discriminative features
and are widely used in redistributing channel relationships and
spatial dependencies. Existing universal attention methods can
be primarily categorized into three types: channel attention
[1]–[6], spatial attention [7]–[10], and hybrid channel-spatial
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Fig. 1. The accuracy of SCSA and various attention mechanisms is compared
across multiple benchmark models on the ImageNet-1K validation set.

attention [11]–[18]. Their focuses differ: channel attention
concentrates on extracting features of objects, while spatial
attention is tailored to augment spatial information. We notice
that spatial information represents semantic feature objects
at the pixel level. Local spatial information captures low-
semantic objects, while global spatial information perceives
high-semantic objects. Thus, different spatial information,
through their semantic associations, reflects distinct feature
objects which are distributed across various features. To this
end, we hypothesize that spatial information can guide channel
learning. To further investigate guidance methodologies, we
first review the current mainstream attention mechanisms.

CBAM [11] aggregates global spatial and channel infor-
mation separately by chaining channel and spatial attention,
but compressing all channel information leads to sharing
across all spatial structures. This weakens the adaptability of
spatial context to different feature maps. To overcome this,
CPCA [19] introduces a channel-priority attention mechanism
and depth-wise stripe convolutions, independently extracting
spatial structures of each feature, significantly improving
medical image segmentation. Furthermore, the EMA [17]
module, based on grouped attention and cross-spatial multi-
scale interactions, effectively integrates spatial information of
both long and short-range dependencies but overlooks inter-
group feature interactions. Although these hybrid attentions
boost learning, they overlook the crucial guiding role of multi-
semantic information in spatial-channel synergy.

How can we construct a synergistic mechanism where
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spatial attention guides channel attention to enhance com-
prehensive learning, and channel attention modulates richer
spatial-specific patterns from multi-semantic levels? Differing
from the aforementioned methods, we explore the synergistic
effects from three aspects: dimension decoupling, lightweight
multi-semantic guidance, and semantic disparities mitigation,
and propose a novel, plug-and-play Spatial and Channel Syner-
gistic Attention(SCSA). Our SCSA is composed of a shareable
Multi-Semantic Spatial Attention (SMSA) and a Progressive
Channel Self-Attention (PCSA) linked sequentially. Our study
initially employs multi-scale, depth-shared 1D convolutions
to extract spatial information at various semantic levels from
four independent sub-features. We utilize group normalization
across four sub-features to hasten model convergence while
avoiding the introduction of batch noise and the leakage of
semantic information between sub-features. Subsequently, we
input the SMSA-modulated feature maps into PCSA, incor-
porating progressive compression and channel-specific self-
attention mechanisms (CSA). Our progressive compression
strategy is designed to minimize computational complexity
while preserving the spatial priors within SMSA, offering a
practical trade-off. Moreover, our PCSA leverages an input-
aware self-attention mechanism to effectively explore channel
similarities, thereby mitigating semantic disparities among dif-
ferent sub-features in SMSA. We conducted extensive experi-
ments across four visual tasks and seven benchmark datasets,
illustrating the effectiveness of the multi-semantic synergy
applied in our SCSA, and its superior generalization capability
compared to other attention mechanisms. In summary, our
contributions are as follows:

• We propose an efficient SMSA that utilizes multi-scale
depth-shared 1D convolutions to capture multi-semantic
spatial information for each feature channel, effectively
integrating global contextual dependencies and multi-
semantic spatial priors.

• Using SMSA, we develop feature-independent spatial
structures and propose PCSA that calculates channel
similarities and contributions guided by compressed spa-
tial knowledge, mitigating semantic disparities in spatial
structures.

• We connected SMSA and PCSA in series to create the
SCSA, exploring synergistic effects through dimension
decoupling, lightweight multi-semantic guidance, and se-
mantic disparities mitigation. Our experiments confirm its
superiority over current state-of-the-art attention mecha-
nisms in various visual tasks and complex scenarios.

II. RELATED WORK

A. Multi-Semantic Spatial Information

Multi-semantic spatial structures incorporate rich category
and contextual information. Effectively integrating global con-
text and local spatial priors enables models to learn higher-
quality representations from various perspectives. The In-
ceptionNets [20]–[23] pioneered a multi-branch approach,
employing parallel vanilla convolutions of different sizes to
capture varying receptive fields, significantly enhancing fea-
ture extraction capabilities. SKNet [2] incorporates multi-scale

convolutions into channel attention, using the squeeze-and-
excitation mechanism proposed by SENet [1] to integrate
spatial priors with varying receptive fields. Benefiting from
the global contextual modeling ability, ViT [10] employs
MHSA to capture correlations at different spatial positions
within distinct semantic sub-features, complemented by po-
sition embedding to compensate for spatial priors, achieving
remarkable success in various downstream tasks. Currently,
many studies develop efficient models [24]–[27] based on
multi-semantic ideas, reducing parameters and computation
for enhanced inference efficiency. Mamba [28] introduces a
selectable state space model using scanning mechanisms and
GPU parallelism to model global contextual dependencies with
linear time complexity. Additionally, VMamba [29] proposes
a cross-scanning module that extends 1D sequence scanning
to 2D image scanning, effectively capturing multi-semantic
global context information from four directions.

B. Attention Compression

Integrating attention mechanisms into various mainstream
backbone or feature fusion networks enhances the model’s
understanding of fine-grained features and accuracy in fea-
ture representation. However, it inevitably leads to increased
memory usage and computational time. CA [15] performs
unidirectional spatial compression along the height (H) and
width (W) dimensions separately, preserving spatial structures
in one direction while aggregating global spatial information in
another, mitigating information loss from global compression.
SA [16] and EMA [5] reshape features into sub-features,
reducing attention computation and parameters. However, re-
shape operations constrained by GPU bandwidth can lead
to costly data transfers, with considerable time spent on
data rearrangement, impacting training and inference speeds.
CPCA [19] uses stripe convolutions in independent channels to
reduce parameters in large-kernel convolutions. Recent studies
also apply dimension decomposition in MHSA, with RMT
[30] applying MHSA separately across H and W dimensions
to minimize computational costs.

Although some of the aforementioned attention methods
have proven effective in specific domains, they still suffer
performance degradation when generalized to more complex
scenarios.

III. METHOD

In this section, we begin by discussing the SMSA module,
which explores the benefits of lightweight multi-semantic
information guidance. Next, we introduce the PCSA module,
which utilizes a progressive compression strategy and channel-
wise self-attention to mitigate semantic disparities. The syn-
ergistic effects of multi-semantic guidance and semantic dis-
parities mitigation motivate us to propose SCSA module. The
overall architecture is shown in Figure 2.

A. Shared Multi-Semantic Spatial Attention
1) Spatial and Channel Decomposition: Decomposition

techniques in neural network architectures significantly reduce
the number of parameters and computational cost. Inspired by
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Fig. 2. An illustration of our proposed SCSA, which uses multi-semantic spatial information to guide the learning of channel-wise self-attention. B denotes
the batch size, C signifies the number of channels, and H and W correspond to the height and width of the feature maps, respectively. The variable n
represents the number of groups into which sub-features are divided, and 1P denotes a single pixel.

TABLE I
COMPARISON OF OUR METHOD, BASED ON THE UPERNET MODEL, WITH

OTHER ATTENTION MECHANISMS FOR SEMANTIC SEGMENTATION
PERFORMANCE ON THE ADE20K BENCHMARK.

Methods UperNet

Params(M) FLOPs(G) mIoU(%)

ResNet-50 64.10 1895 40.20
+ CBAM 66.62 1895 39.62
+ CPCA 65.94 1927 39.68
+ SE 66.62 1895 39.94
+ SA 64.10 1895 40.01
+ ECA 64.10 1895 40.46
+ FCA 66.61 1895 41.09
+ SCSA(Ours) 64.16 1895 41.14

ResNet-101 83.09 2051 42.74
+ CBAM 87.84 2051 41.65
+ ECA 83.09 2051 42.63
+ SE 87.84 2051 42.66
+ FCA 87.83 2051 43.22
+ SCSA(Ours) 83.22 2051 43.76

the structure of 1D sequences in NLP tasks, in our study,
we decompose the given input X ∈ RB×C×H×W along the
height and width dimensions. We apply global average pooling
to each dimension, thereby creating two unidirectional 1D
sequence structures: XH ∈ RB×C×W and XW ∈ RB×C×H .
To learn varying spatial distributions and contextual relation-
ships, we partition the feature set into K identically sized,
independent sub-features, Xi

H and Xi
W , with each sub-feature

having a channel count of C
K . In this paper, we set the default

value K = 4. The process of decomposing into sub-features

TABLE II
COMPARISON OF OUR METHOD, BASED ON THE MASK R-CNN, WITH

OTHER ATTENTION MECHANISMS FOR INSTANCE SEGMENTATION
PERFORMANCE ON MSCOCO VAL2017.

Methods Mask R-CNN

AP AP50 AP75 APS APM APL

ResNet50 34.8 55.9 36.9 16.4 37.4 50.2
+ CBAM 35.4 56.9 37.6 17.4 38.3 50.6
+ ECA 35.5 57.6 37.6 16.6 38.4 52.0
+ FCA 35.5 57.2 37.6 17.1 38.6 51.3
+ SE 35.7 57.3 38.1 17.7 38.6 50.9
+ SA 35.7 57.7 38.0 17.2 38.7 51.5
+ CA 35.8 57.5 38.2 16.9 38.5 51.7
+ SCSA 36.1 58.4 38.3 17.2 39.1 51.9

is presented as follows:

Xi
H = XH [:, (i− 1)× C

K
: i× C

K
, :] (1)

Xi
W = XW [:, (i− 1)× C

K
: i× C

K
, :] (2)

Xi represents the i-th sub-feature, where i ∈ [1,K]. Each
sub-feature is independent, facilitating efficient extraction of
multi-semantic spatial information.

2) Lightweight Convolution Strategies Across Disjoint Sub-
features: After partitioning the feature set into exclusive sub-
features, we aim to efficiently capture distinct semantic spa-
tial structures within each sub-feature. Inspired by extensive
research [25], [26], [31] on reducing feature redundancy,
which reveal that such redundancy is likely due to intense
interactions among features, we also observe varied spatial
structures among features. Based on these insight, and aiming
to enrich semantic information, enhance semantic coherence,
and minimize semantic gaps, we apply depth-wise 1D con-
volutions with kernel sizes of 3, 5, 7, and 9 in four sub-
features. Furthermore, to address the limited receptive field
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caused by decomposing features into H and W dimensions
and applying 1D convolutions separately, we use lightweight
shared convolutions for alignment, implicitly modeling the de-
pendency between the two dimensions by learning consistent
features in both dimensions. The ablation details regarding
them are provided in Table III. The implementation process
for extracting multi-semantic spatial information is defined as
follows:

X̃i
H = DWConv1d

C
K

→ C
K

ki
(Xi

H) (3)

X̃i
W = DWConv1d

C
K

→ C
K

ki
(Xi

W ) (4)

X̃i represents the spatial structural information of the i-th sub-
feature obtained after lightweight convolutional operations. ki
denotes the convolution kernel applied to the i-th sub-feature.

To accurately compute spatial attention maps for each
feature, we aggregate distinct semantic sub-features and use
Group Normalization (GN) with K groups for normalization.
We opt for GN over the conventional Batch Normalization
(BN) because our study finds that GN is superior in distin-
guishing semantic differences among sub-features. GN allows
for the independent normalization of each sub-feature with-
out introducing batch statistical noise, effectively mitigating
semantic interference between sub-features and preventing at-
tention dilution. This approach is validated by ablation studies
shown in Table III. Finally, spatial attention is generated using
a simple Sigmoid activation function, which activates and
suppresses specific spatial regions. The computation of output
features is as follows:

AttnH = σ(GNK
H (Concat(X̃1

H , X̃2
H , ..., X̃K

H ))) (5)

AttnW = σ(GNK
W (Concat(X̃1

W , X̃2
W , ..., X̃K

W ))) (6)
Xs = AttnH ×AttnW ×X (7)

σ(·) denotes the Sigmoid normalization, while GNK
H (·) and

GNK
W (·) represent GN with K groups along the H and W

dimensions, respectively.

B. Progressive Channel-wise Self-Attention
A prevalent approach to compute channel attention is

through convolutional operations that explore dependencies
among channels. There is limited theoretical research on
how convolutional layers explicitly model these dependencies,
aside from achieving it through backpropagation and gradient
updates. Inspired by the significant advantages of the ViT [10]
in utilizing MHSA for modeling similarities among different
tokens in spatial attention calculations, we propose combining
the MHSA concept with modulated spatial priors from SMSA
to compute inter-channel similarities. Moreover, to preserve
and utilize the multi-semantic spatial information extracted by
SMSA, and to reduce the computational cost of MHSA, we
employ a progressive compression method, which reflects the
guidance in our synergistic effects. Compared to traditional
convolutional operations, PCSA exhibits stronger input per-
ception capabilities and effectively utilizes the spatial priors
provided by SMSA to deepen learning. The implementation
details of our PCSA are as follows:

Xp = Pool
(H,W )→(H′,W ′)
(7,7) (Xs) (8)

Fproj = DWConv1dC→C
(1,1) (9)

Q = FQ
proj(Xp),K = FK

proj(Xp), V = FV
proj(Xp) (10)

Xattn = Attn(Q,K, V ) = Softmax(
QKT

√
C

)V (11)

Xc = Xs × σ(Pool
(H′,W ′)→(1,1)

(H′,W ′) (Xattn)) (12)

TABLE III
ABLATION STUDIES ON THE DESIGN STRATEGY OF SCSA, CONDUCTED

AT A 224X224 RESOLUTION, USING THE IMAGENET-1K VALIDATION SET.
THE ABBREVIATION ”PC” DENOTES PROGRESSIVE COMPRESSION.

Gi(K1,K2, . . . ,Ki) DENOTES SPLITTING X INTO i SUB-FEATURES AND
APPLYING A 1D CONVOLUTION OF SIZE Ki TO EACH i-TH SUB-FEATURE.

Ablations Variants Throughput Top-1
(imgs/s) (%)

Baseline SCSA-50 2009 77.49

Macro Design

w/o SMSA 2217 76.72
w/o PCSA 2155 77.44

w/o PC 1982 77.31
w/ Multi-head + Shuffle 2082 77.35

Ordering PCSA Prior 2005 77.20
GN Prior 2010 77.47

Micro Design
GN→BN 1999 77.19

Shared → Unshared 1981 77.32
Scaled:

√
C →

√
H ∗W 2001 77.34

Branch
G1(3) 2085 77.24
G1(7) 2063 77.17

G2(3,7) 2040 77.32

Pool
(H,W )→(H′,W ′)
(7,7) (·) denotes a pooling operation with a

kernel size of 7x7 that rescales the resolution from (H,W )
to (H ′,W ′). Fproj(·) represents the mapping function that
generates the query, key, and value.

It’s important to note that, unlike the MHSA in the ViTs
where Q,K, V ∈ RB×N×C with N = HW , in our PCSA’s
CA-MHSA, self-attention is computed along the channel di-
mension, with Q,K, V ∈ RB×C×N .

C. Synergistic Effects
The synergistic spatial and channel attention mechanisms

aim to complement each other. In our work, we propose a
novel concept of guiding channel attention learning through
spatial attention. Drawing from the connection methods of
CBAM [11] and CPCA [19], we employ a simple serial
connection to integrate our SMSA and PSCA modules. Our
innovation lies in the meticulously designed spatial and chan-
nel attentions: spatial attention extracts multi-semantic spatial
information from each feature, providing precise spatial priors
for channel attention computation; channel attention refines the
semantic understanding of local sub-feature Xi by leveraging
the overall feature map X , mitigating semantic disparities
caused by multi-scale convolution in SMSA. Additionally,
unlike previous approaches [1], [11], [12], [15], we do not
employ channel compression, effectively preventing the loss
of crucial features. Ultimately, our constructed SCSA is as
follows:

SCSA(X) = PCSA(SMSA(X)) (13)

IV. EXPERIMENTS

In this section, we first introduce the experimental details.
Next, we conduct experiments on four visual tasks, compar-
ing our proposed SCSA with other state-of-the-art attention
mechanisms. Following this, in Section IV-E, we perform a
comprehensive ablation study on our meticulously designed
SCSA from four different perspectives.
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TABLE IV
COMPARISON OF OUR PROPOSED SCSA WITH OTHER STATE-OF-THE-ART ATTENTION MECHANISMS ACROSS MULTIPLE BENCHMARK MODELS AT A

224X224 RESOLUTION ON THE IMAGENET-1K VALIDATION SET.

Backbones Type Methods Params(M) FLOPs(G) Throughput(imgs/s) Top-1(%) Top-5(%)

ResNet-50

– ResNet [32] 25.56 4.02 2433 76.39 93.09

Channel
ECANet [5] 25.56 4.11 2109 77.05 93.43
SENet [1] 28.07 4.11 2077 77.23 93.56
FcaNet [3] 28.07 4.11 1905 77.29 93.64

Hybrid

CPCA [19] 27.40 4.87 1379 75.80 92.57
CBAM [11] 28.07 4.12 1687 77.12 93.50
SANet [16] 25.56 4.12 1493 77.12 93.64
ELA [18] 25.59 4.11 2233 77.25 93.52
CA [15] 25.69 4.11 2244 77.37 93.52

EMA [17] 25.57 4.18 1861 77.43 93.79
SCSA(Ours) 25.62 4.12 2019 77.49 93.60

ResNet-101

– ResNet [32] 44.55 7.83 1588 77.76 93.81

Channel
ECANet [5] 44.55 7.83 1408 78.32 93.99
SENet [1] 49.30 7.84 1399 78.40 94.05
FcaNet [3] 49.29 7.84 1242 78.51 94.10

Hybrid
CBAM [11] 49.30 7.84 1118 78.09 94.07

CA [15] 44.80 7.84 1437 78.11 93.92
SCSA(Ours) 44.68 7.85 1298 78.56 94.31

MobileNetV2-1.0

– MobileNetV2 [33] 3.51 0.31 6693 71.54 90.11

Channel ECANet [5] 3.51 0.31 5746 72.02 90.35

Hybrid
CBAM [11] 4.07 0.32 4539 72.43 90.49
SCSA(Ours) 3.63 0.34 2751 72.72 90.81

Input ResNet-50 SE-50 CBAM-50 ECA-50 CA-50 SA-50 SCSA-50

Fig. 3. Comparative attention visualizations for ’layer 4.2’ across multiple
models, generated using samples randomly selected from different categories
of the ImageNet-1K validation set, through Grad-CAM [34].

A. Implementation Details

To evaluate our proposed SCSA on ImageNet-1K [35],
we select three mainstream backbone networks based on
CNN architectures, including ResNet-50, ResNet-101 [32]
and MobileNetV2-1.0 [33]. Specifically, for models based on
ResNets, we employ an SGD optimizer with a momentum of
0.9, a weight decay of 1e-4, and an initial learning rate of 0.05.
which is reduced tenfold every 30 epochs. The models are
trained using a batch size of 128 over 100 training epochs. For
training MobileNetV2 with our SCSA, we follow the settings
used in ECANet [5], the optimizer has a momentum of 0.9
and a weight decay of 4e-5, with an initial learning rate of
0.045. This rate decrease linearly by a factor of 0.98, and the
batch size is set to 96 for 400 training epochs. Notably, to
enhance training efficiency, we employ Automatically Mixed
Precision(AMP) training on a single NVIDIA RTX 4090 GPU
for the classification tasks.

We evaluate our SCSA on MSCOCO 2017 [36] using

Faster R-CNN [37], Mask R-CNN [38], Cascade R-CNN
[39], and RetinaNet [40]. These detectors are implemented
using the MMDetection [41] toolboxes with default settings.
Input images are scaled proportionally by their shorter side to
800. All models are trained using an SGD optimizer with a
momentum of 0.9 and a weight decay of 1e-4, with a batch
size of 2 per GPU, over a total of 12 epochs. Faster R-CNN,
Mask R-CNN and Cascade R-CNN started with a learning
rate of 0.0025, while RetinaNet starts at 0.00125. The learning
rates for all models are decreased by a factor of 10 at the 8th
and 11th epochs. We fine-tuned the model on the MSCOCO
train2017 dataset for 12 epochs using a single NVIDIA H800
GPU and reported comparative results on val2017.

We further validate our method on ADE20K [42] with the
UperNet [43] for semantic segmentation. Following common
practices [44], [45], we also utilize the MMSegmentation [46]
toolboxes, set the batch size to 16, and conduct 80k training
iterations. All models are trained using an SGD optimizer with
an initial learning rate of 0.01, a momentum of 0.9, and a
weight decay of 5e-4. We also conduct training and inference
using a single NVIDIA H800 GPU.

All models are trained with the default random seed 0.

B. Image Classification

We compare our SCSA against other state-of-the-art atten-
tion mechanisms such as SENet [1], CBAM [11], ECANet
[5], FcaNet [3], CA [15], SANet [16], EMA [17], CPCA
[19], and ELA [18]. As shown in Figure 1 and Table IV,
our SCSA achieved the highest Top-1 accuracy across net-
works of different scales, with negligible parameter count and
computational complexity. Within hybrid architectures, our
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TABLE V
COMPARISON OF THE PERFORMANCE OF DIFFERENT ATTENTION MECHANISMS FOR OBJECT DETECTION ON MSCOCO VAL2017, UTILIZING MODELS

SUCH AS FASTER R-CNN, CASCADE R-CNN, AND RETINANET. ALL MODELS WERE FINE-TUNED USING THE ”1×” SCHEDULE.

Detectors Methods Params(M) FLOPs(G) AP(%) AP50(%) AP75(%) APS (%) APM (%) APL(%)

Faster R-CNN

ResNet-50 41.75 187.20 37.6 58.7 40.9 21.5 41.2 48.1
+ FCA 44.27 187.31 38.4 59.8 41.5 22.8 42.4 48.9
+ ECA 41.75 187.20 38.5 60.0 41.4 22.6 42.6 49.4
+ SE 44.27 187.20 38.7 60.2 41.6 23.2 42.4 49.3
+ CA 41.89 187.21 39.0 60.6 42.3 23.2 42.8 49.5

+ SCSA(Ours) 41.81 187.35 39.3 60.6 42.8 23.2 43.1 50.2

ResNet-101 60.75 255.43 40.2 61.3 43.8 23.9 44.2 51.8
+ FCA 65.49 255.60 40.6 62.2 44.1 23.8 44.9 52.5
+ SE 65.49 255.44 40.8 62.2 44.4 24.9 44.7 53.0

+ ECA 60.75 255.43 40.9 62.4 44.3 24.2 45.0 53.0
+ CA 60.99 255.45 41.1 62.2 44.8 24.1 45.0 53.5

+ SCSA(Ours) 60.88 255.74 41.5 62.9 45.4 24.6 45.3 53.7

Cascade R-CNN

ResNet-50 69.40 214.84 40.3 58.9 43.8 22.5 43.8 52.8
+ FCA 71.91 214.94 41.3 60.2 44.6 24.1 44.9 53.7
+ SE 71.91 214.84 41.4 60.2 44.9 24.5 44.7 54.0

+ CBAM 71.91 214.87 41.4 60.2 45.0 24.5 44.6 54.3
+ ECA 69.40 214.84 41.7 60.7 45.2 24.7 45.4 54.3

+ SCSA(Ours) 69.46 214.99 42.1 61.4 45.7 24.6 45.5 54.3

ResNet-101 88.39 283.07 42.6 61.1 46.6 24.9 46.7 55.7
+ SE 93.13 283.08 43.2 62.3 47.2 25.8 47.1 56.2

+ FCA 93.13 283.24 43.4 62.5 47.6 25.5 47.3 56.8
+ ECA 88.39 283.07 43.7 62.7 47.5 25.5 47.7 56.8
+ CA 88.64 283.09 43.8 62.8 48.0 26.0 47.6 57.4

+ SCSA(Ours) 88.52 283.38 44.2 63.1 48.2 26.0 48.2 57.5

RetinaNet

ResNet-50 37.97 214.68 36.5 55.5 39.1 20.2 40.1 48.1
+ FCA 40.48 214.78 37.3 57.2 39.3 21.6 40.9 49.0
+ SE 40.49 214.68 37.4 57.0 40.0 21.5 41.3 49.0

+ ECA 37.97 214.68 37.5 57.2 39.8 21.5 41.1 49.5
+ CBAM 40.49 214.71 37.6 57.0 40.2 22.0 41.6 48.7

+ SCSA(Ours) 38.03 214.83 37.9 57.6 40.2 22.5 41.3 49.7

ResNet-101 56.96 282.91 39.3 58.7 41.9 22.8 43.5 51.8
+ SE 61.71 282.92 39.8 59.9 42.2 22.9 43.8 52.1

+ FCA 61.70 283.08 39.9 60.0 42.4 22.9 44.6 52.4
+ CA 57.21 282.93 40.2 60.0 43.0 23.2 44.3 52.8

+ ECA 56.96 282.91 40.3 60.4 42.9 23.4 44.2 52.7
+ SCSA(Ours) 57.09 283.22 40.5 60.8 43.6 23.7 44.3 53.1

method’s inference speed based on ResNet is second only to
CA, but it offer a better balance of accuracy, speed, and model
complexity with a moderate model width.

C. Object Detection

We evaluate the generalization ability of our SCSA on
general detection tasks to verify its effectiveness in enhancing
feature extraction. We use ResNet-50 and ResNet-101 as the
backbone networks and FPN [47] as the feature fusion sub-
network.

As shown in Table V, our method outperforms other state-
of-the-art attention methods across various detectors, model
sizes, and object scales. For Faster R-CNN, our SCSA im-
proves by 1.7% and 1.3% compared to the original ResNet-50
and ResNet-101, respectively. We also provide visualizations
based on MSCOCO val2017 in Appendix C and detailed
experiments on more complex scenarios (e.g., small targets
on the VisDrone2019 [48] dataset, dark environments on the
ExDark [49] dataset, and infrared scenes on the FLIR-ADAS-
V2 [50] dataset) in Appendix E. These further demonstrating
the effectiveness and generalizability of our method.

D. Segmentation
We also test its performance in semantic segmentation

on ADE20K and instance segmentation on MSCOCO 2017.
Some methods (e.g., CBAM, CPCA, SE, SA, ECA) have not
previously been tested on ADE20K for semantic segmentation,
so we conduct extensive comparative experiments based on the
UperNet [43] network. As shown in Tables I and II, our SCSA
significantly outperforms other attention methods. Specifically,
SCSA improves performance by 0.94% and 1.02% on ResNet-
50 and ResNet-101, respectively, while other methods only
achieve improvements of 0.1% to 0.2%, and some even fall
below the baseline model. These results demonstrate that our
method, based on multi-semantic spatial information, performs
exceptionally well in pixel-level tasks.

E. Ablation Study
As shown in Table III, we use SCSA-50 as a baseline on

ImageNet-1K for ablations across four aspects.
1) Macro Design: We separately validate the SMSA and

PCSA modules. Both demonstrate significant accuracy im-
provements, with SMSA notably enhancing classification ac-
curacy by 1.05%. Without progressive compression in PCSA,
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accuracy drops by 0.18%, and this is primarily because the
channel attention mechanism cannot utilize the discriminative
spatial priors provided by SMSA for its computations. Ad-
ditionally, when replacing the single attention head in PCSA
with multi-head and channel shuffle operation, performance
decrease from 77.49% to 77.35%. This phenomenon is pri-
marily attributed to the strong inter-channel interactions facil-
itated by the single head, which effectively alleviate semantic
disparities observed in SMSA.

2) Ordering: When PCSA is moved ahead of SMSA, there
is a 0.29% drop in Top-1 accuracy. This decrease is attributed
to the early channel attention, where spatial information across
features remains unmodulated by spatial attention, lacking
precise spatial priors to guide channel recalibration. This effec-
tively validates our hypothesis that spatial attention can guide
channel learning. Concerning the timing of normalization,
placing GN before the attention computation leads to a slight
reduction in accuracy. This could be due to pre-normalization
diminishing the distinct semantic patterns inherent to different
sub-features, thus impacting the representation of diverse
semantic features.

3) Micro Design: Replacing GN with BN results in a
decrease in both accuracy and inference speed, with the Top-
1 accuracy dropping from 77.49% to 77.19%. This decline
is attributed to GN’s superior ability to preserve the inde-
pendence of semantic patterns among sub-features, thereby
minimizing semantic interference. Conversely, BN is highly
sensitive to batch size, introducing additional batch statistical
noise for multi-semantic information. These insights suggest
that GN may be a more suitable choice in convolution layers
that involve multiple semantics. Furthermore, the decline in ac-
curacy and increase in parameters with unshared convolutions
further validate the effectiveness of using shared convolutions
to consistently learn and model features and dependencies
across the H and W dimensions.

4) Branch: Reducing the diversity of convolution kernels
led to a decrease in accuracy, underscoring the significant
impact of multi-semantic information on enhancing feature ex-
traction capabilities. Drawing on the synergistic approach pro-
posed in our SCSA, we leverage semantic space information to
bolster feature extraction and employ channel self-attention to
facilitate semantic interaction, effectively mitigating disparities
across different semantic spaces and promoting better fusion
of multi-semantic information.

V. ANALYSIS

A. Visualization of Attention
As shown in Figure 3, our SCSA distinctly focuses on

multiple key regions under similar receptive field conditions,
significantly minimizing critical information loss, and pro-
viding rich feature information for the ultimate downstream
tasks. This advantage arises from the SCSA’s synergistic
design, which preserves critical information in both spatial
and channel domains during their attention computations,
further emphasizing its superior representational capabilities
compared to other attention mechanisms. Detailed analysis and
visualization results for detection and segmentation tasks can
be found in Appendix.

VI. CONCLUSION

In this paper, we explore the synergy between spa-
tial and channel dimensions through dimension decoupling,
lightweight multi-semantic guidance, and semantic disparities
mitigation, proposing SCSA—a novel, plug-and-play spatial
and channel synergistic attention mechanism. Extensive exper-
iments across multiple visual tasks demonstrate the enhanced
performance and robust generalization capabilities of our
SCSA compared to other state-of-the-art attention mechanism.
We hope that our research will facilitate the exploration of
synergistic properties across multiple dimensions in various
domains.
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APPENDIX A
INTEGRATING SCSA INTO THE BLOCK

Figure 4 shows our SCSA module integrated into blocks of
ResNet and MobileNetV2. In our work, for ResNet, we con-
sider the appropriate model width, which differs slightly from
other attention mechanisms. For MobileNetV2, we account for
the DWConv’s need to compensate for its lack of expressive
capability by increasing the model width. Therefore, we place
it in the same position as other attention mechanisms.

APPENDIX B
VISUALIZATION OF SEGMENTATION RESULTS

A. Instance Segmentation

To validate the effectiveness of incorporating synergis-
tic multi-semantic information into SCSA, we select three
random samples from MSCOCO val2017 for instance seg-
mentation with Mask R-CNN. As shown in Figure 5, our
method segments obscured and overlapping objects more
comprehensively and accurately, achieving higher confidence
scores. These results underscore the benefits of our method in

https://github.com/open-mmlab/mmsegmentation
https://github.com/open-mmlab/mmsegmentation
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Fig. 4. Main Module Structures with SCSA: (a) MobileNetv2’s inverted
residual module. (b) Residual blocks for ResNet-18 and ResNet-34. (c)
Residual blocks for ResNet-50 and above.

leveraging multi-semantic information to better perceive the
contextual space of relevant objects.

Ground Truth ResNet-50 SCSA-50 (Ours)

Fig. 5. Visualization of instance segmentation results using the Mask R-CNN
detector. Each instance depicted in a distinct color.

B. Semantic Segmentation

In addition to instance segmentation, we visualize semantic
segmentation outcomes as well. Utilizing the ADE20K dataset,
we randomly select three samples for inference via UperNet
and compared our method visually with the ResNet-50 base-
line. It can be observed from Figure 6 that our method signif-
icantly improves the segmentation of objects that overlap and
are semantically adjacent, effectively distinguishing between
scenarios such as spectators seated on chairs and toilets near
bathtubs.

APPENDIX C
VISUALIZATION OF DETECTION RESULTS

We visualize the detection results using detectors such as
Faster R-CNN, Cascade R-CNN, and RetinaNet. For each

Ground Truth ResNet-50 SCSA-50 (Ours)

Fig. 6. Visualization of semantic segmentation results using the UperNet
model.

TABLE VI
COMPARISON OF OUR SCSA, BASED ON RESNET-50 AND RESNET-101,

WITH OTHER ATTENTION MECHANISMS FOR OBJECT DETECTION
PERFORMANCE ACROSS FOUR DIFFERENT DATASETS.

Datasets Methods ResNet-50 ResNet-101

AP AP50 AP75 AP AP50 AP75

VOC 0712

- 50.7 81.9 55.7 54.3 83.8 61.0
+SE 50.2 81.9 54.1 53.7 83.6 60.1

+ECA 50.7 82.2 55.0 54.4 84.4 60.5
+FCA 50.8 82.0 55.2 53.7 83.7 59.6
+CA 51.8 82.5 56.5 55.4 84.2 61.5

+SCSA 53.0 83.0 58.0 55.5 84.6 61.8

VisDrone2019

- 22.1 37.3 23.1 23.1 38.5 24.5
+SE 21.6 36.7 22.4 22.1 37.6 23.1

+FCA 21.9 37.1 22.7 22.4 38.0 22.8
+ECA 21.9 37.3 22.7 22.6 38.3 22.9
+CA 22.8 38.3 23.9 23.5 39.2 24.4

+SCSA 22.9 38.7 24.0 23.3 39.2 24.2

ExDark

- 39.2 71.4 38.6 42.4 74.9 43.4
+ECA 37.9 70.7 37.2 42.4 75.1 42.8
+SE 38.3 71.1 37.1 41.8 74.8 42.0

+FCA 38.3 71.4 37.6 41.9 75.0 42.4
+CA 39.5 72.2 39.8 43.2 75.6 45.4

+SCSA 40.2 73.2 40.0 43.0 75.6 44.9

FLIR-ADAS2

- 24.7 42.2 25.5 26.3 44.6 28.0
+CA 24.2 42.2 25.0 25.5 43.7 26.8

+FCA 24.4 41.5 25.8 24.7 42.0 25.9
+SE 24.5 42.5 25.5 25.2 42.9 26.0

+ECA 24.6 41.9 25.6 25.3 42.8 25.9
+SCSA 24.8 42.3 26.1 25.4 43.2 26.2

detector, we randomly select two samples from MSCOCO
val2017 and conduct comparisons with the ResNet-50 base-
line. As shown in Figure 7, our method demonstrates superior
performance in challenging scenarios, including obstruction,
dense environments, clusters of small objects, and low-light
conditions.

APPENDIX D
MORE EXPERIMENTS

We are keen to explore whether attention mechanisms can
be more effectively applied to various complex scene tasks.
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Fig. 7. Detection results are visualized on Faster R-CNN, Cascade R-CNN, and RetinaNet by respectively selecting two random samples from COCO val2017
and comparing our SCSA with the ResNet-50 baseline to demonstrate the effectiveness of our method.

TABLE VII
CODE AND DATASETS ASSETS USED IN OUR WORK.

Name URL

ImageNet-1K https://image-net.org/
MSCOCO 2017 https://cocodataset.org/

ADE20K http://sceneparsing.csail.mit.edu/
VOC 0712 http://host.robots.ox.ac.uk/pascal/VOC/

VisDrone2019-DET https://github.com/VisDrone/VisDrone-Dataset
ExDark https://github.com/cs-chan/Exclusively-Dark-Image-Dataset

FLIR-ADAS2 https://www.flir.com/oem/adas/adas-dataset-form/

MMPretrain https://github.com/open-mmlab/mmpretrain
MMDetection https://github.com/open-mmlab/mmdetection

MMSegmentation https://github.com/open-mmlab/mmsegmentation

While previous research has shown good performance on
general large-scale datasets, the effectiveness in dense, low-
light, and small-object scenes remains uncharted. Therefore,
we conducted more experiments using representative datasets:
the small-object dataset VisDrone2019 [48], low-light dataset
ExDark [49], infrared automotive dataset FLIR-ADAS2 [50],
and general dataset VOC 0712 [51]. The experimental setup
was consistent with the detection configurations in Section IV.
As shown in Table VI, it is gratifying that our SCSA outper-
formed others across these datasets, further demonstrating the
robustness of our strategy in maintaining channel counts and
the synergistic concept of multi-semantic information. Fur-
thermore, our results indicate that the application of attention
mechanisms on long-tail datasets, such as FLIR-ADAS2, has
led to minimal performance gains and even declines. This may
be due to the attention mechanism’s squeeze-and-excitation
strategy being ill-suited for handling imbalanced distributed
data, resulting in a focus on high-frequency categories while
neglecting the learning of low-frequency ones. We believe that

our approach will also perform well in other detection and
segmentation tasks.

APPENDIX E
FURTHER ANALYSIS OF EFFECTIVENESS

Due to inherent semantic disparities across various ob-
jects and scales, our approach leverages these multi-semantic
disparities. We employ shareable depth-wise convolutions to
independently learn unique patterns in different features, ef-
fectively capturing the distinctiveness of each object. Ad-
ditionally, by utilizing spatial knowledge that can perceive
fine-grained and coarse-grained features of different objects,
our method guides strong feature interactions and recali-
bration. This process integrates and alleviates the semantic
ambiguities caused by semantic disparities, motivating our
synergistic idea. For objects of different categories or the
same category at different scales, the SMSA module extracts
multi-semantic spatial knowledge, while the PCSA module
efficiently integrates multi-scale semantic information. This

https://image-net.org/
https://cocodataset.org/
http://sceneparsing.csail.mit.edu/
http://host.robots.ox.ac.uk/pascal/VOC/
https://github.com/VisDrone/VisDrone-Dataset
https://github.com/cs-chan/Exclusively-Dark-Image-Dataset
https://www.flir.com/oem/adas/adas-dataset-form/
https://github.com/open-mmlab/mmpretrain
https://github.com/open-mmlab/mmdetection
https://github.com/open-mmlab/mmsegmentation
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Fig. 8. Comparison of effective receptive fields(ERFs). Our SCSA provides a larger effective receptive field compared to the baseline, and the effect becomes
more pronounced as the layers deepen.

enriches the global context, providing more comprehensive
support for local decisions. Precise handling of local details
helps selectively emphasize pixel-level areas of interest, which
is a key factor in our significant advantages in object detection,
instance segmentation, and semantic segmentation tasks.

A. Visualization of ERFs

As depicted in Figure 8, leveraging the spatial structure of
multi-semantic modeling, our SCSA has achieved a broader
perceptual area. A larger effective receptive field(ERF) is
beneficial for the network to utilize rich contextual infor-
mation for collective decision-making, which is one of the
important factors for performance improvement. To verify
that the performance of our method benefits from a larger
ERF, we randomly sample 300 images of different categories
from the ImageNet-1K validation set, measure the contribution
of each pixel on the original image to the center point of
the output feature maps of the third and fourth stages of
the model, and quantify the range of the ERF with the
gradient values weighted and normalized. The visualization
results demonstrate that as the network layers deepen, the ERF
of our SCSA becomes increasingly evident, confirming our
hypothesis and the effectiveness of our method.

B. Computational Complexity
Given an input X ∈ RC×H×W , a pooling size of P × P ,

and a depth-wise convolutional kernel size of K ×K, we se-
quentially consider the impact of dimension decoupling, depth-
shared 1D convolutions, normalization, progressive compres-
sion, and channel-wise self-attention, which collectively con-
stitute the SCSA module. For simplicity of observation, we
ignore the coefficients. The computational complexities of
SCSA are:

Ω(SCSA) = O(HC +WC) +O(KHC +KWC)

+O(HWC) +O(P 2H
′
W

′
C +H

′
W

′
C)

+O(H
′
W

′
C +H

′
W

′
C2) (14)

H
′

and W
′

denote the height and width, respectively, of
the intermediate feature map produced by the progressive
compression operation.

We observe that when the model width (i.e., the number of
channels, C) is moderate, Ω(SCSA) scales linearly with the
length of the input sequence. This indicates that our SCSA
can perform inference with linear complexity when the model
width is moderate.

C. Inference Throughput Evaluation

As demonstrated in Tables III and IV, we evaluate the
throughput of SCSA’s individual components in ablation ex-
periments and compare the throughput across various bench-
mark models using different attention mechanisms. We obtain
results using an GeForce RTX 4090 GPU at 224x224 resolu-
tion. Specifically, As illustrated in Table III, although SCSA
is slightly slower than pure channel attention, it outperforms
most hybrid attention mechanisms, including CBAM, SANet,
EMA, and CPCA, and achieves the highest accuracy. Table III
indicates our design optimizes balance in model complexity,
inference speed, and accuracy.

APPENDIX F
LIMITATIONS

We demonstrated that our SCSA, a plug-and-play syner-
gistic attention method, excels in image classification, object
detection, and instance and semantic segmentation tasks. Al-
though we are committed to exploring the synergistic effects
across various dimensions and have empirically validated the
effectiveness of leveraging multi-semantic spatial information
to guide channel recalibration and enhance feature interactions
for mitigating semantic differences, inference latency remains
a significant challenge in real-world deployment. Our approach
achieves an optimal balance of model parameters, accuracy,
and inference speed at an appropriate model width. However,
at larger widths, the primary bottleneck in inference speed is
the use of depth-wise convolutions within the construction of
a mutli-semantic spatial structure, which have low FLOPS,
frequently access memory, and exhibit low computational
density [26]. We believe that the positioning and quantity of
attention modules should be optimized based on specific tasks
and scenarios to ensure peak performance. In the future, we
will explore attention synergy across multiple dimensions to
ensure that attention mechanisms across different dimensions
complement and enhance each other.
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