import datetime import cv2 from net import Restormer_Encoder, Restormer_Decoder, BaseFeatureExtraction, DetailFeatureExtraction import os import numpy as np from utils.Evaluator import Evaluator import torch import torch.nn as nn from utils.img_read_save import img_save,image_read_cv2 import warnings import logging warnings.filterwarnings("ignore") logging.basicConfig(level=logging.CRITICAL) current_time = datetime.datetime.now().strftime("%Y%m%d_%H%M%S") os.environ["CUDA_VISIBLE_DEVICES"] = "0" ckpt_path= r"/home/star/whaiDir/PFCFuse/models/whaiFusion10-08-16-20.pth" for dataset_name in ["TNO","RoadScene","sar"]: print("\n"*2+"="*80) model_name="PFCFuse " print("The test result of "+dataset_name+' :') test_folder = os.path.join('test_img', dataset_name) test_out_folder=os.path.join('test_result',current_time,dataset_name) device = 'cuda' if torch.cuda.is_available() else 'cpu' Encoder = nn.DataParallel(Restormer_Encoder()).to(device) Decoder = nn.DataParallel(Restormer_Decoder()).to(device) BaseFuseLayer = nn.DataParallel(BaseFeatureExtraction(dim=64)).to(device) DetailFuseLayer = nn.DataParallel(DetailFeatureExtraction(num_layers=1)).to(device) Encoder.load_state_dict(torch.load(ckpt_path)['DIDF_Encoder'],strict=False) Decoder.load_state_dict(torch.load(ckpt_path)['DIDF_Decoder']) BaseFuseLayer.load_state_dict(torch.load(ckpt_path)['BaseFuseLayer']) DetailFuseLayer.load_state_dict(torch.load(ckpt_path)['DetailFuseLayer']) Encoder.eval() Decoder.eval() BaseFuseLayer.eval() DetailFuseLayer.eval() with torch.no_grad(): for img_name in os.listdir(os.path.join(test_folder,"ir")): data_IR=image_read_cv2(os.path.join(test_folder,"ir",img_name),mode='GRAY')[np.newaxis,np.newaxis, ...]/255.0 data_VIS = cv2.split(image_read_cv2(os.path.join(test_folder, "vi", img_name), mode='YCrCb'))[0][np.newaxis, np.newaxis, ...] / 255.0 data_VIS_BGR = cv2.imread(os.path.join(test_folder, "vi", img_name)) _, data_VIS_Cr, data_VIS_Cb = cv2.split(cv2.cvtColor(data_VIS_BGR, cv2.COLOR_BGR2YCrCb)) data_IR,data_VIS = torch.FloatTensor(data_IR),torch.FloatTensor(data_VIS) data_VIS, data_IR = data_VIS.cuda(), data_IR.cuda() feature_V_B, feature_V_D, feature_V = Encoder(data_VIS) feature_I_B, feature_I_D, feature_I = Encoder(data_IR) feature_F_B = BaseFuseLayer(feature_V_B + feature_I_B) feature_F_D = DetailFuseLayer(feature_V_D + feature_I_D) data_Fuse, _ = Decoder(data_VIS, feature_F_B, feature_F_D) data_Fuse=(data_Fuse-torch.min(data_Fuse))/(torch.max(data_Fuse)-torch.min(data_Fuse)) fi = np.squeeze((data_Fuse * 255).cpu().numpy()) fi = fi.astype(np.uint8) ycrcb_fi = np.dstack((fi, data_VIS_Cr, data_VIS_Cb)) rgb_fi = cv2.cvtColor(ycrcb_fi, cv2.COLOR_YCrCb2RGB) img_save(rgb_fi, img_name.split(sep='.')[0], test_out_folder) eval_folder=test_out_folder ori_img_folder=test_folder metric_result = np.zeros((8)) for img_name in os.listdir(os.path.join(ori_img_folder,"ir")): ir = image_read_cv2(os.path.join(ori_img_folder,"ir", img_name), 'GRAY') vi = image_read_cv2(os.path.join(ori_img_folder,"vi", img_name), 'GRAY') fi = image_read_cv2(os.path.join(eval_folder, img_name.split('.')[0]+".png"), 'GRAY') metric_result += np.array([Evaluator.EN(fi), Evaluator.SD(fi) , Evaluator.SF(fi), Evaluator.MI(fi, ir, vi) , Evaluator.SCD(fi, ir, vi), Evaluator.VIFF(fi, ir, vi) , Evaluator.Qabf(fi, ir, vi), Evaluator.SSIM(fi, ir, vi)]) metric_result /= len(os.listdir(eval_folder)) print("\t\t EN\t SD\t SF\t MI\tSCD\tVIF\tQabf\tSSIM") print(model_name+'\t'+str(np.round(metric_result[0], 2))+'\t' +str(np.round(metric_result[1], 2))+'\t' +str(np.round(metric_result[2], 2))+'\t' +str(np.round(metric_result[3], 2))+'\t' +str(np.round(metric_result[4], 2))+'\t' +str(np.round(metric_result[5], 2))+'\t' +str(np.round(metric_result[6], 2))+'\t' +str(np.round(metric_result[7], 2)) ) print("="*80)