import torch import torch.nn as nn import math import torch.nn.functional as F import torch.utils.checkpoint as checkpoint from timm.models.layers import DropPath, to_2tuple, trunc_normal_ from einops import rearrange def drop_path(x, drop_prob: float = 0., training: bool = False): """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ if drop_prob == 0. or not training: return x keep_prob = 1 - drop_prob # work with diff dim tensors, not just 2D ConvNets shape = (x.shape[0],) + (1,) * (x.ndim - 1) random_tensor = keep_prob + \ torch.rand(shape, dtype=x.dtype, device=x.device) random_tensor.floor_() # binarize output = x.div(keep_prob) * random_tensor return output class DropPath(nn.Module): """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). """ def __init__(self, drop_prob=None): super(DropPath, self).__init__() self.drop_prob = drop_prob def forward(self, x): return drop_path(x, self.drop_prob, self.training) class AttentionBase(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False,): super(AttentionBase, self).__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = nn.Parameter(torch.ones(num_heads, 1, 1)) self.qkv1 = nn.Conv2d(dim, dim*3, kernel_size=1, bias=qkv_bias) self.qkv2 = nn.Conv2d(dim*3, dim*3, kernel_size=3, padding=1, bias=qkv_bias) self.proj = nn.Conv2d(dim, dim, kernel_size=1, bias=qkv_bias) def forward(self, x): # [batch_size, num_patches + 1, total_embed_dim] b, c, h, w = x.shape qkv = self.qkv2(self.qkv1(x)) q, k, v = qkv.chunk(3, dim=1) q = rearrange(q, 'b (head c) h w -> b head c (h w)', head=self.num_heads) k = rearrange(k, 'b (head c) h w -> b head c (h w)', head=self.num_heads) v = rearrange(v, 'b (head c) h w -> b head c (h w)', head=self.num_heads) q = torch.nn.functional.normalize(q, dim=-1) k = torch.nn.functional.normalize(k, dim=-1) # transpose: -> [batch_size, num_heads, embed_dim_per_head, num_patches + 1] # @: multiply -> [batch_size, num_heads, num_patches + 1, num_patches + 1] attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) out = (attn @ v) out = rearrange(out, 'b head c (h w) -> b (head c) h w', head=self.num_heads, h=h, w=w) out = self.proj(out) return out class Mlp(nn.Module): """ MLP as used in Vision Transformer, MLP-Mixer and related networks """ def __init__(self, in_features, hidden_features=None, ffn_expansion_factor = 2, bias = False): super().__init__() hidden_features = int(in_features*ffn_expansion_factor) self.project_in = nn.Conv2d( in_features, hidden_features*2, kernel_size=1, bias=bias) self.dwconv = nn.Conv2d(hidden_features*2, hidden_features*2, kernel_size=3, stride=1, padding=1, groups=hidden_features, bias=bias) self.project_out = nn.Conv2d( hidden_features, in_features, kernel_size=1, bias=bias) def forward(self, x): x = self.project_in(x) x1, x2 = self.dwconv(x).chunk(2, dim=1) x = F.gelu(x1) * x2 x = self.project_out(x) return x class BaseFeatureExtraction(nn.Module): def __init__(self, dim, num_heads, ffn_expansion_factor=1., qkv_bias=False,): super(BaseFeatureExtraction, self).__init__() self.norm1 = LayerNorm(dim, 'WithBias') # https://zhuanlan.zhihu.com/p/444887088#:~:text=%E5%9C%A8%E6%9C%AC%E6%96%87%E4%B8%AD%EF%BC%8C%E6%88%91%E4%BB%AC%E6%8F%90%E5%87%BA%E4%BA%86 self.attn = AttentionBase(dim, num_heads=num_heads, qkv_bias=qkv_bias,) self.norm2 = LayerNorm(dim, 'WithBias') self.mlp = Mlp(in_features=dim, ffn_expansion_factor=ffn_expansion_factor,) def forward(self, x): x = x + self.attn(self.norm1(x)) x = x + self.mlp(self.norm2(x)) return x class InvertedResidualBlock(nn.Module): def __init__(self, inp, oup, expand_ratio): super(InvertedResidualBlock, self).__init__() hidden_dim = int(inp * expand_ratio) self.bottleneckBlock = nn.Sequential( # pw nn.Conv2d(inp, hidden_dim, 1, bias=False), # nn.BatchNorm2d(hidden_dim), nn.ReLU6(inplace=True), # dw nn.ReflectionPad2d(1), nn.Conv2d(hidden_dim, hidden_dim, 3, groups=hidden_dim, bias=False), # nn.BatchNorm2d(hidden_dim), nn.ReLU6(inplace=True), # pw-linear nn.Conv2d(hidden_dim, oup, 1, bias=False), # nn.BatchNorm2d(oup), ) def forward(self, x): return self.bottleneckBlock(x) class DetailNode(nn.Module): def __init__(self): super(DetailNode, self).__init__() # Scale is Ax + b, i.e. affine transformation self.theta_phi = InvertedResidualBlock(inp=32, oup=32, expand_ratio=2) self.theta_rho = InvertedResidualBlock(inp=32, oup=32, expand_ratio=2) self.theta_eta = InvertedResidualBlock(inp=32, oup=32, expand_ratio=2) self.shffleconv = nn.Conv2d(64, 64, kernel_size=1, stride=1, padding=0, bias=True) def separateFeature(self, x): z1, z2 = x[:, :x.shape[1]//2], x[:, x.shape[1]//2:x.shape[1]] return z1, z2 def forward(self, z1, z2): z1, z2 = self.separateFeature( self.shffleconv(torch.cat((z1, z2), dim=1))) z2 = z2 + self.theta_phi(z1) z1 = z1 * torch.exp(self.theta_rho(z2)) + self.theta_eta(z2) return z1, z2 class DetailFeatureExtraction(nn.Module): def __init__(self, num_layers=3): super(DetailFeatureExtraction, self).__init__() INNmodules = [DetailNode() for _ in range(num_layers)] self.net = nn.Sequential(*INNmodules) def forward(self, x): z1, z2 = x[:, :x.shape[1]//2], x[:, x.shape[1]//2:x.shape[1]] for layer in self.net: z1, z2 = layer(z1, z2) return torch.cat((z1, z2), dim=1) if __name__ == '__main__': x = torch.randn(1, 64, 256, 256) model = DetailFeatureExtraction(3) print(model(x).shape) # ============================================================================= # ============================================================================= import numbers ########################################################################## ## Layer Norm def to_3d(x): return rearrange(x, 'b c h w -> b (h w) c') def to_4d(x, h, w): return rearrange(x, 'b (h w) c -> b c h w', h=h, w=w) class BiasFree_LayerNorm(nn.Module): def __init__(self, normalized_shape): super(BiasFree_LayerNorm, self).__init__() if isinstance(normalized_shape, numbers.Integral): normalized_shape = (normalized_shape,) normalized_shape = torch.Size(normalized_shape) assert len(normalized_shape) == 1 self.weight = nn.Parameter(torch.ones(normalized_shape)) self.normalized_shape = normalized_shape def forward(self, x): sigma = x.var(-1, keepdim=True, unbiased=False) return x / torch.sqrt(sigma+1e-5) * self.weight class WithBias_LayerNorm(nn.Module): def __init__(self, normalized_shape): super(WithBias_LayerNorm, self).__init__() if isinstance(normalized_shape, numbers.Integral): normalized_shape = (normalized_shape,) normalized_shape = torch.Size(normalized_shape) assert len(normalized_shape) == 1 self.weight = nn.Parameter(torch.ones(normalized_shape)) self.bias = nn.Parameter(torch.zeros(normalized_shape)) self.normalized_shape = normalized_shape def forward(self, x): mu = x.mean(-1, keepdim=True) sigma = x.var(-1, keepdim=True, unbiased=False) return (x - mu) / torch.sqrt(sigma+1e-5) * self.weight + self.bias class LayerNorm(nn.Module): def __init__(self, dim, LayerNorm_type): super(LayerNorm, self).__init__() if LayerNorm_type == 'BiasFree': self.body = BiasFree_LayerNorm(dim) else: self.body = WithBias_LayerNorm(dim) def forward(self, x): h, w = x.shape[-2:] return to_4d(self.body(to_3d(x)), h, w) ########################################################################## ## Gated-Dconv Feed-Forward Network (GDFN) class FeedForward(nn.Module): def __init__(self, dim, ffn_expansion_factor, bias): super(FeedForward, self).__init__() hidden_features = int(dim*ffn_expansion_factor) self.project_in = nn.Conv2d( dim, hidden_features*2, kernel_size=1, bias=bias) self.dwconv = nn.Conv2d(hidden_features*2, hidden_features*2, kernel_size=3, stride=1, padding=1, groups=hidden_features*2, bias=bias) self.project_out = nn.Conv2d( hidden_features, dim, kernel_size=1, bias=bias) def forward(self, x): x = self.project_in(x) x1, x2 = self.dwconv(x).chunk(2, dim=1) x = F.gelu(x1) * x2 x = self.project_out(x) return x ########################################################################## ## Multi-DConv Head Transposed Self-Attention (MDTA) class Attention(nn.Module): def __init__(self, dim, num_heads, bias): super(Attention, self).__init__() self.num_heads = num_heads self.temperature = nn.Parameter(torch.ones(num_heads, 1, 1)) self.qkv = nn.Conv2d(dim, dim*3, kernel_size=1, bias=bias) self.qkv_dwconv = nn.Conv2d( dim*3, dim*3, kernel_size=3, stride=1, padding=1, groups=dim*3, bias=bias) self.project_out = nn.Conv2d(dim, dim, kernel_size=1, bias=bias) def forward(self, x): b, c, h, w = x.shape qkv = self.qkv_dwconv(self.qkv(x)) q, k, v = qkv.chunk(3, dim=1) q = rearrange(q, 'b (head c) h w -> b head c (h w)', head=self.num_heads) k = rearrange(k, 'b (head c) h w -> b head c (h w)', head=self.num_heads) v = rearrange(v, 'b (head c) h w -> b head c (h w)', head=self.num_heads) q = torch.nn.functional.normalize(q, dim=-1) k = torch.nn.functional.normalize(k, dim=-1) attn = (q @ k.transpose(-2, -1)) * self.temperature attn = attn.softmax(dim=-1) out = (attn @ v) out = rearrange(out, 'b head c (h w) -> b (head c) h w', head=self.num_heads, h=h, w=w) out = self.project_out(out) return out ########################################################################## class TransformerBlock(nn.Module): def __init__(self, dim, num_heads, ffn_expansion_factor, bias, LayerNorm_type): super(TransformerBlock, self).__init__() self.norm1 = LayerNorm(dim, LayerNorm_type) self.attn = Attention(dim, num_heads, bias) self.norm2 = LayerNorm(dim, LayerNorm_type) self.ffn = FeedForward(dim, ffn_expansion_factor, bias) def forward(self, x): x = x + self.attn(self.norm1(x)) x = x + self.ffn(self.norm2(x)) return x ########################################################################## ## Overlapped image patch embedding with 3x3 Conv class OverlapPatchEmbed(nn.Module): def __init__(self, in_c=3, embed_dim=48, bias=False): super(OverlapPatchEmbed, self).__init__() self.proj = nn.Conv2d(in_c, embed_dim, kernel_size=3, stride=1, padding=1, bias=bias) def forward(self, x): x = self.proj(x) return x class Restormer_Encoder(nn.Module): def __init__(self, inp_channels=1, out_channels=1, dim=64, num_blocks=[4, 4], heads=[8, 8, 8], ffn_expansion_factor=2, bias=False, LayerNorm_type='WithBias', ): super(Restormer_Encoder, self).__init__() self.patch_embed = OverlapPatchEmbed(inp_channels, dim) self.encoder_level1 = nn.Sequential(*[TransformerBlock(dim=dim, num_heads=heads[0], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type) for i in range(num_blocks[0])]) self.baseFeature = BaseFeatureExtraction(dim=dim, num_heads = heads[2]) self.detailFeature = DetailFeatureExtraction() def forward(self, inp_img): inp_enc_level1 = self.patch_embed(inp_img) out_enc_level1 = self.encoder_level1(inp_enc_level1) base_feature = self.baseFeature(out_enc_level1) detail_feature = self.detailFeature(out_enc_level1) return base_feature, detail_feature, out_enc_level1 class Restormer_Decoder(nn.Module): def __init__(self, inp_channels=1, out_channels=1, dim=64, num_blocks=[4, 4], heads=[8, 8, 8], ffn_expansion_factor=2, bias=False, LayerNorm_type='WithBias', ): super(Restormer_Decoder, self).__init__() self.reduce_channel = nn.Conv2d(int(dim*2), int(dim), kernel_size=1, bias=bias) self.encoder_level2 = nn.Sequential(*[TransformerBlock(dim=dim, num_heads=heads[1], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type) for i in range(num_blocks[1])]) self.output = nn.Sequential( nn.Conv2d(int(dim), int(dim)//2, kernel_size=3, stride=1, padding=1, bias=bias), nn.LeakyReLU(), nn.Conv2d(int(dim)//2, out_channels, kernel_size=3, stride=1, padding=1, bias=bias),) self.sigmoid = nn.Sigmoid() def forward(self, inp_img, base_feature, detail_feature): out_enc_level0 = torch.cat((base_feature, detail_feature), dim=1) out_enc_level0 = self.reduce_channel(out_enc_level0) out_enc_level1 = self.encoder_level2(out_enc_level0) if inp_img is not None: out_enc_level1 = self.output(out_enc_level1) + inp_img else: out_enc_level1 = self.output(out_enc_level1) return self.sigmoid(out_enc_level1), out_enc_level0 if __name__ == '__main__': height = 128 width = 128 window_size = 8 modelE = Restormer_Encoder().cuda() modelD = Restormer_Decoder().cuda()