import pywt import pywt.data import torch from torch import nn from torch.autograd import Function import torch.nn.functional as F """ECCV2024 https://arxiv.org/abs/2407.05848 近年来,人们尝试增加卷积神经网络 (CNN) 的内核大小,以模拟 Vision Transformers (ViTs) 自注意力模块的全局接受场。 然而,这种方法在实现全局接受场之前就很快达到上限并饱和。 在这项研究中,我们证明了通过利用小波变换 (WT),实际上可以获得非常大的接受场,而不会遭受过度参数化,所提出的层名为 WTConv, 可用作现有架构中的直接替换,产生有效的多频响应,并可随接受场的大小优雅地扩展。 我们证明了 ConvNeXt 和 MobileNetV2 架构中 WTConv 层对图像分类的有效性,以及下游任务的主干,并表明它具有其他属性, 例如对图像损坏的鲁棒性和对纹理形状的响应增强。 """ def create_wavelet_filter(wave, in_size, out_size, type=torch.float): w = pywt.Wavelet(wave) dec_hi = torch.tensor(w.dec_hi[::-1], dtype=type) dec_lo = torch.tensor(w.dec_lo[::-1], dtype=type) dec_filters = torch.stack([dec_lo.unsqueeze(0) * dec_lo.unsqueeze(1), dec_lo.unsqueeze(0) * dec_hi.unsqueeze(1), dec_hi.unsqueeze(0) * dec_lo.unsqueeze(1), dec_hi.unsqueeze(0) * dec_hi.unsqueeze(1)], dim=0) dec_filters = dec_filters[:, None].repeat(in_size, 1, 1, 1) rec_hi = torch.tensor(w.rec_hi[::-1], dtype=type).flip(dims=[0]) rec_lo = torch.tensor(w.rec_lo[::-1], dtype=type).flip(dims=[0]) rec_filters = torch.stack([rec_lo.unsqueeze(0) * rec_lo.unsqueeze(1), rec_lo.unsqueeze(0) * rec_hi.unsqueeze(1), rec_hi.unsqueeze(0) * rec_lo.unsqueeze(1), rec_hi.unsqueeze(0) * rec_hi.unsqueeze(1)], dim=0) rec_filters = rec_filters[:, None].repeat(out_size, 1, 1, 1) return dec_filters, rec_filters def wavelet_transform(x, filters): b, c, h, w = x.shape pad = (filters.shape[2] // 2 - 1, filters.shape[3] // 2 - 1) x = F.conv2d(x, filters, stride=2, groups=c, padding=pad) x = x.reshape(b, c, 4, h // 2, w // 2) return x def inverse_wavelet_transform(x, filters): b, c, _, h_half, w_half = x.shape pad = (filters.shape[2] // 2 - 1, filters.shape[3] // 2 - 1) x = x.reshape(b, c * 4, h_half, w_half) x = F.conv_transpose2d(x, filters, stride=2, groups=c, padding=pad) return x def wavelet_transform_init(filters): class WaveletTransform(Function): @staticmethod def forward(ctx, input): with torch.no_grad(): x = wavelet_transform(input, filters) return x @staticmethod def backward(ctx, grad_output): grad = inverse_wavelet_transform(grad_output, filters) return grad, None return WaveletTransform().apply def inverse_wavelet_transform_init(filters): class InverseWaveletTransform(Function): @staticmethod def forward(ctx, input): with torch.no_grad(): x = inverse_wavelet_transform(input, filters) return x @staticmethod def backward(ctx, grad_output): grad = wavelet_transform(grad_output, filters) return grad, None return InverseWaveletTransform().apply class WTConv2d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=5, stride=1, bias=True, wt_levels=1, wt_type='db1'): super(WTConv2d, self).__init__() assert in_channels == out_channels self.in_channels = in_channels self.wt_levels = wt_levels self.stride = stride self.dilation = 1 self.wt_filter, self.iwt_filter = create_wavelet_filter(wt_type, in_channels, in_channels, torch.float) self.wt_filter = nn.Parameter(self.wt_filter, requires_grad=False) self.iwt_filter = nn.Parameter(self.iwt_filter, requires_grad=False) self.wt_function = wavelet_transform_init(self.wt_filter) self.iwt_function = inverse_wavelet_transform_init(self.iwt_filter) self.base_conv = nn.Conv2d(in_channels, in_channels, kernel_size, padding='same', stride=1, dilation=1, groups=in_channels, bias=bias) self.base_scale = _ScaleModule([1, in_channels, 1, 1]) self.wavelet_convs = nn.ModuleList( [nn.Conv2d(in_channels * 4, in_channels * 4, kernel_size, padding='same', stride=1, dilation=1, groups=in_channels * 4, bias=False) for _ in range(self.wt_levels)] ) self.wavelet_scale = nn.ModuleList( [_ScaleModule([1, in_channels * 4, 1, 1], init_scale=0.1) for _ in range(self.wt_levels)] ) if self.stride > 1: self.stride_filter = nn.Parameter(torch.ones(in_channels, 1, 1, 1), requires_grad=False) self.do_stride = lambda x_in: F.conv2d(x_in, self.stride_filter, bias=None, stride=self.stride, groups=in_channels) else: self.do_stride = None def forward(self, x): x_ll_in_levels = [] x_h_in_levels = [] shapes_in_levels = [] curr_x_ll = x for i in range(self.wt_levels): curr_shape = curr_x_ll.shape shapes_in_levels.append(curr_shape) if (curr_shape[2] % 2 > 0) or (curr_shape[3] % 2 > 0): curr_pads = (0, curr_shape[3] % 2, 0, curr_shape[2] % 2) curr_x_ll = F.pad(curr_x_ll, curr_pads) curr_x = self.wt_function(curr_x_ll) curr_x_ll = curr_x[:, :, 0, :, :] shape_x = curr_x.shape curr_x_tag = curr_x.reshape(shape_x[0], shape_x[1] * 4, shape_x[3], shape_x[4]) curr_x_tag = self.wavelet_scale[i](self.wavelet_convs[i](curr_x_tag)) curr_x_tag = curr_x_tag.reshape(shape_x) x_ll_in_levels.append(curr_x_tag[:, :, 0, :, :]) x_h_in_levels.append(curr_x_tag[:, :, 1:4, :, :]) next_x_ll = 0 for i in range(self.wt_levels - 1, -1, -1): curr_x_ll = x_ll_in_levels.pop() curr_x_h = x_h_in_levels.pop() curr_shape = shapes_in_levels.pop() curr_x_ll = curr_x_ll + next_x_ll curr_x = torch.cat([curr_x_ll.unsqueeze(2), curr_x_h], dim=2) next_x_ll = self.iwt_function(curr_x) next_x_ll = next_x_ll[:, :, :curr_shape[2], :curr_shape[3]] x_tag = next_x_ll assert len(x_ll_in_levels) == 0 x = self.base_scale(self.base_conv(x)) x = x + x_tag if self.do_stride is not None: x = self.do_stride(x) return x class _ScaleModule(nn.Module): def __init__(self, dims, init_scale=1.0, init_bias=0): super(_ScaleModule, self).__init__() self.dims = dims self.weight = nn.Parameter(torch.ones(*dims) * init_scale) self.bias = None def forward(self, x): return torch.mul(self.weight, x) if __name__ == '__main__': in_channels = 3 out_channels = 3 block = WTConv2d(in_channels, out_channels) input = torch.rand(1, in_channels, 64, 64) output = block(input) print(input.size()) print(output.size())