import json import torch from transformers.utils import WEIGHTS_NAME, CONFIG_NAME from transformers.utils.hub import cached_file def load_config_hf(model_name): resolved_archive_file = cached_file(model_name, CONFIG_NAME, _raise_exceptions_for_missing_entries=False) return json.load(open(resolved_archive_file)) def load_state_dict_hf(model_name, device=None, dtype=None): # If not fp32, then we don't want to load directly to the GPU mapped_device = "cpu" if dtype not in [torch.float32, None] else device resolved_archive_file = cached_file(model_name, WEIGHTS_NAME, _raise_exceptions_for_missing_entries=False) return torch.load(resolved_archive_file, map_location=mapped_device) # Convert dtype before moving to GPU to save memory if dtype is not None: state_dict = {k: v.to(dtype=dtype) for k, v in state_dict.items()} state_dict = {k: v.to(device=device) for k, v in state_dict.items()} return state_dict