2.4.1+cu121 True Model: PFCFuse Number of epochs: 60 Epoch gap: 40 Learning rate: 0.0001 Weight decay: 0 Batch size: 1 GPU number: 0 Coefficient of MSE loss VF: 1.0 Coefficient of MSE loss IF: 1.0 Coefficient of RMI loss VF: 1.0 Coefficient of RMI loss IF: 1.0 Coefficient of Cosine loss VF: 1.0 Coefficient of Cosine loss IF: 1.0 Coefficient of Decomposition loss: 2.0 Coefficient of Total Variation loss: 5.0 Clip gradient norm value: 0.01 Optimization step: 20 Optimization gamma: 0.5 [Epoch 0/60] [Batch 0/6487] [loss: 18.997314] ETA: 9 days, 21 [Epoch 0/60] [Batch 1000/6487] [loss: 0.168454] ETA: 9:49:11.56 [Epoch 0/60] [Batch 2000/6487] [loss: 0.350209] ETA: 9:50:02.48 [Epoch 0/60] [Batch 3000/6487] [loss: 0.069812] ETA: 9:50:01.39 [Epoch 0/60] [Batch 4000/6487] [loss: 0.065885] ETA: 10:07:51.9 [Epoch 0/60] [Batch 5000/6487] [loss: 0.245787] ETA: 9:54:20.43 [Epoch 0/60] [Batch 6000/6487] [loss: 0.042268] ETA: 10:03:01.5 [Epoch 1/60] [Batch 0/6487] [loss: 0.066391] ETA: 9:49:42.62 [Epoch 1/60] [Batch 1000/6487] [loss: 0.261340] ETA: 9:53:01.14 [Epoch 1/60] [Batch 2000/6487] [loss: 0.095140] ETA: 10:00:23.2 [Epoch 1/60] [Batch 3000/6487] [loss: 0.028199] ETA: 10:17:34.6 [Epoch 1/60] [Batch 4000/6487] [loss: 0.089190] ETA: 9:03:05.02 [Epoch 1/60] [Batch 5000/6487] [loss: 0.134494] ETA: 9:40:49.06 [Epoch 1/60] [Batch 6000/6487] [loss: 0.134911] ETA: 10:01:31.0 [Epoch 2/60] [Batch 0/6487] [loss: 0.105676] ETA: 9:39:54.85 [Epoch 2/60] [Batch 1000/6487] [loss: 0.048246] ETA: 9:53:22.48 [Epoch 2/60] [Batch 2000/6487] [loss: 0.028375] ETA: 9:40:39.29 [Epoch 2/60] [Batch 3000/6487] [loss: 0.034128] ETA: 9:56:36.89 [Epoch 2/60] [Batch 4000/6487] [loss: 0.022569] ETA: 9:42:22.52 [Epoch 2/60] [Batch 5000/6487] [loss: 0.055698] ETA: 9:37:40.30 [Epoch 2/60] [Batch 6000/6487] [loss: 0.056826] ETA: 9:44:44.57 [Epoch 3/60] [Batch 0/6487] [loss: 0.020840] ETA: 9:25:04.54 [Epoch 3/60] [Batch 1000/6487] [loss: 0.033522] ETA: 9:21:26.95 [Epoch 3/60] [Batch 2000/6487] [loss: 0.087376] ETA: 9:33:31.90 [Epoch 3/60] [Batch 3000/6487] [loss: 0.054073] ETA: 9:33:48.42 [Epoch 3/60] [Batch 4000/6487] [loss: 0.015202] ETA: 9:35:51.08 [Epoch 3/60] [Batch 5000/6487] [loss: 0.023986] ETA: 9:13:47.44 [Epoch 3/60] [Batch 6000/6487] [loss: 0.027252] ETA: 9:12:56.42 [Epoch 4/60] [Batch 0/6487] [loss: 0.028229] ETA: 9:07:31.99 [Epoch 4/60] [Batch 1000/6487] [loss: 0.009431] ETA: 9:17:32.62 [Epoch 4/60] [Batch 2000/6487] [loss: 0.019674] ETA: 9:11:41.71 [Epoch 4/60] [Batch 3000/6487] [loss: 0.036560] ETA: 9:13:51.69 [Epoch 4/60] [Batch 4000/6487] [loss: 0.023415] ETA: 9:04:01.70 [Epoch 4/60] [Batch 5000/6487] [loss: 0.040478] ETA: 8:51:47.13 [Epoch 4/60] [Batch 6000/6487] [loss: 0.082253] ETA: 9:05:46.11 [Epoch 5/60] [Batch 0/6487] [loss: 0.071554] ETA: 9:08:54.46 [Epoch 5/60] [Batch 1000/6487] [loss: 0.049842] ETA: 8:58:09.51 [Epoch 5/60] [Batch 2000/6487] [loss: 0.010863] ETA: 8:56:36.05 [Epoch 5/60] [Batch 3000/6487] [loss: 0.043838] ETA: 9:04:35.75 [Epoch 5/60] [Batch 4000/6487] [loss: 0.108259] ETA: 8:57:50.84 [Epoch 5/60] [Batch 5000/6487] [loss: 0.024255] ETA: 8:58:37.17 [Epoch 5/60] [Batch 6000/6487] [loss: 0.040892] ETA: 8:55:42.00 [Epoch 6/60] [Batch 0/6487] [loss: 0.023312] ETA: 8:54:04.34 [Epoch 6/60] [Batch 1000/6487] [loss: 0.035162] ETA: 8:54:12.47 [Epoch 6/60] [Batch 2000/6487] [loss: 0.015531] ETA: 8:53:49.38 [Epoch 6/60] [Batch 3000/6487] [loss: 0.077984] ETA: 8:48:18.87 [Epoch 6/60] [Batch 4000/6487] [loss: 0.020643] ETA: 9:11:35.39 [Epoch 6/60] [Batch 5000/6487] [loss: 0.018760] ETA: 9:03:14.95 [Epoch 6/60] [Batch 6000/6487] [loss: 0.064921] ETA: 8:45:53.60 [Epoch 7/60] [Batch 0/6487] [loss: 0.020156] ETA: 8:57:09.24 [Epoch 7/60] [Batch 1000/6487] [loss: 0.023395] ETA: 8:24:13.53 [Epoch 7/60] [Batch 2000/6487] [loss: 0.029281] ETA: 8:43:02.96 [Epoch 7/60] [Batch 3000/6487] [loss: 0.034845] ETA: 8:42:22.83 [Epoch 7/60] [Batch 4000/6487] [loss: 0.003461] ETA: 8:38:22.20 [Epoch 7/60] [Batch 5000/6487] [loss: 0.017755] ETA: 8:34:32.13 [Epoch 7/60] [Batch 6000/6487] [loss: 0.029525] ETA: 8:56:35.38 [Epoch 8/60] [Batch 0/6487] [loss: 0.013173] ETA: 8:39:37.20 [Epoch 8/60] [Batch 1000/6487] [loss: 0.006751] ETA: 9:16:29.80 [Epoch 8/60] [Batch 2000/6487] [loss: 0.017919] ETA: 8:39:39.59 [Epoch 8/60] [Batch 3000/6487] [loss: 0.194062] ETA: 8:26:52.51 [Epoch 8/60] [Batch 4000/6487] [loss: 0.043372] ETA: 8:28:11.61 [Epoch 8/60] [Batch 5000/6487] [loss: 0.033920] ETA: 8:30:32.83 [Epoch 8/60] [Batch 6000/6487] [loss: 0.008135] ETA: 8:38:24.67 [Epoch 9/60] [Batch 0/6487] [loss: 0.008534] ETA: 8:22:37.70 [Epoch 9/60] [Batch 1000/6487] [loss: 0.019043] ETA: 8:18:04.41 [Epoch 9/60] [Batch 2000/6487] [loss: 0.034581] ETA: 8:28:55.32 [Epoch 9/60] [Batch 3000/6487] [loss: 0.044300] ETA: 8:14:17.40 [Epoch 9/60] [Batch 4000/6487] [loss: 0.019384] ETA: 8:13:10.31 [Epoch 9/60] [Batch 5000/6487] [loss: 0.049925] ETA: 8:14:50.03 [Epoch 9/60] [Batch 6000/6487] [loss: 0.017746] ETA: 8:15:26.70 [Epoch 10/60] [Batch 0/6487] [loss: 0.028521] ETA: 8:19:38.16 [Epoch 10/60] [Batch 1000/6487] [loss: 0.014648] ETA: 8:17:37.82 [Epoch 10/60] [Batch 2000/6487] [loss: 0.045394] ETA: 8:16:26.00 [Epoch 10/60] [Batch 3000/6487] [loss: 0.024051] ETA: 8:10:38.39 [Epoch 10/60] [Batch 4000/6487] [loss: 0.004026] ETA: 8:13:11.58 [Epoch 10/60] [Batch 5000/6487] [loss: 0.016114] ETA: 8:10:52.15 [Epoch 10/60] [Batch 6000/6487] [loss: 0.055893] ETA: 8:07:49.83 [Epoch 11/60] [Batch 0/6487] [loss: 0.066364] ETA: 8:09:19.87 [Epoch 11/60] [Batch 1000/6487] [loss: 0.006531] ETA: 8:15:30.68 [Epoch 11/60] [Batch 2000/6487] [loss: 0.012910] ETA: 8:38:10.06 [Epoch 11/60] [Batch 3000/6487] [loss: 0.018403] ETA: 8:06:35.75 [Epoch 11/60] [Batch 4000/6487] [loss: 0.033711] ETA: 8:31:08.71 [Epoch 11/60] [Batch 5000/6487] [loss: 0.011338] ETA: 7:57:47.33 [Epoch 11/60] [Batch 6000/6487] [loss: 0.100941] ETA: 7:53:55.39 [Epoch 12/60] [Batch 0/6487] [loss: 0.015037] ETA: 8:01:30.09 [Epoch 12/60] [Batch 1000/6487] [loss: 0.030051] ETA: 8:03:12.37 [Epoch 12/60] [Batch 2000/6487] [loss: 0.118560] ETA: 7:55:56.12 [Epoch 12/60] [Batch 3000/6487] [loss: 0.034878] ETA: 7:48:51.71 [Epoch 12/60] [Batch 4000/6487] [loss: 0.070042] ETA: 7:59:20.80 [Epoch 12/60] [Batch 5000/6487] [loss: 0.027831] ETA: 7:48:42.75 [Epoch 12/60] [Batch 6000/6487] [loss: 0.069188] ETA: 7:48:37.23 [Epoch 13/60] [Batch 0/6487] [loss: 0.012127] ETA: 7:50:06.80 [Epoch 13/60] [Batch 1000/6487] [loss: 0.099335] ETA: 7:47:59.87 [Epoch 13/60] [Batch 2000/6487] [loss: 0.053219] ETA: 7:44:02.39 [Epoch 13/60] [Batch 3000/6487] [loss: 0.034852] ETA: 7:44:14.47 [Epoch 13/60] [Batch 4000/6487] [loss: 0.037935] ETA: 7:43:17.21 [Epoch 13/60] [Batch 5000/6487] [loss: 0.004800] ETA: 7:33:29.48 [Epoch 13/60] [Batch 6000/6487] [loss: 0.011718] ETA: 7:39:18.29 [Epoch 14/60] [Batch 0/6487] [loss: 0.066959] ETA: 7:46:41.01 [Epoch 14/60] [Batch 1000/6487] [loss: 0.012596] ETA: 7:33:36.97 [Epoch 14/60] [Batch 2000/6487] [loss: 0.044466] ETA: 7:36:43.39 [Epoch 14/60] [Batch 3000/6487] [loss: 0.048720] ETA: 7:35:39.53 [Epoch 14/60] [Batch 4000/6487] [loss: 0.009346] ETA: 7:24:57.95 [Epoch 14/60] [Batch 5000/6487] [loss: 0.051516] ETA: 7:31:27.91 [Epoch 14/60] [Batch 6000/6487] [loss: 0.016138] ETA: 7:32:52.03 [Epoch 15/60] [Batch 0/6487] [loss: 0.005100] ETA: 7:26:40.78 [Epoch 15/60] [Batch 1000/6487] [loss: 0.035449] ETA: 7:31:27.18 [Epoch 15/60] [Batch 2000/6487] [loss: 0.082434] ETA: 7:27:34.45 [Epoch 15/60] [Batch 3000/6487] [loss: 0.014699] ETA: 7:25:05.27 [Epoch 15/60] [Batch 4000/6487] [loss: 0.058203] ETA: 7:22:03.05 [Epoch 15/60] [Batch 5000/6487] [loss: 0.017237] ETA: 7:16:34.93 [Epoch 15/60] [Batch 6000/6487] [loss: 0.027539] ETA: 7:17:09.26 [Epoch 16/60] [Batch 0/6487] [loss: 0.061302] ETA: 7:20:07.38 [Epoch 16/60] [Batch 1000/6487] [loss: 0.030785] ETA: 7:15:17.26 [Epoch 16/60] [Batch 2000/6487] [loss: 0.029255] ETA: 7:19:16.69 [Epoch 16/60] [Batch 3000/6487] [loss: 0.033562] ETA: 7:14:02.70 [Epoch 16/60] [Batch 4000/6487] [loss: 0.029975] ETA: 7:11:28.15 [Epoch 16/60] [Batch 5000/6487] [loss: 0.015033] ETA: 7:06:03.16 [Epoch 16/60] [Batch 6000/6487] [loss: 0.014657] ETA: 7:05:38.42 [Epoch 17/60] [Batch 0/6487] [loss: 0.018211] ETA: 7:07:44.70