pfcfuse/logs/log_20241006_164707.log
zjut 0e6064181a 新增SAR图像处理功能并优化模型性能
- 新增BaseFeatureExtractionSAR和DetailFeatureExtractionSAR类,专门用于SAR图像的特征提取
- 在Restormer_Encoder中加入SAR图像处理的支持,通过新增的SAR特征提取模块提高模型对SAR图像的处理能力
- 更新test_IVF.py,增加对SAR图像的测试,验证模型在不同数据集上的性能
- 通过这些修改,模型在TNO和RoadScene数据集上的表现得到显著提升,详细指标见日志文件
2024-10-09 12:09:30 +08:00

44 lines
20 KiB
Plaintext

2.4.1+cu121
True
Model: PFCFuse
Number of epochs: 60
Epoch gap: 40
Learning rate: 0.0001
Weight decay: 0
Batch size: 1
GPU number: 0
Coefficient of MSE loss VF: 1.0
Coefficient of MSE loss IF: 1.0
Coefficient of RMI loss VF: 1.0
Coefficient of RMI loss IF: 1.0
Coefficient of Cosine loss VF: 1.0
Coefficient of Cosine loss IF: 1.0
Coefficient of Decomposition loss: 2.0
Coefficient of Total Variation loss: 5.0
Clip gradient norm value: 0.01
Optimization step: 20
Optimization gamma: 0.5
[Epoch 0/60] [Batch 0/6487] [loss: 6.843450] ETA: 10 days, 1
[Epoch 0/60] [Batch 1/6487] [loss: 17.473789] ETA: 10:18:13.0
[Epoch 0/60] [Batch 2/6487] [loss: 6.973145] ETA: 9:26:17.17
[Epoch 0/60] [Batch 3/6487] [loss: 7.598927] ETA: 9:24:09.86
[Epoch 0/60] [Batch 4/6487] [loss: 7.397294] ETA: 9:21:32.02
[Epoch 0/60] [Batch 5/6487] [loss: 17.675234] ETA: 9:24:20.36
[Epoch 0/60] [Batch 6/6487] [loss: 11.842889] ETA: 9:43:36.42
[Epoch 0/60] [Batch 7/6487] [loss: 8.561872] ETA: 9:32:16.41
[Epoch 0/60] [Batch 8/6487] [loss: 8.628882] ETA: 9:40:58.48
[Epoch 0/60] [Batch 9/6487] [loss: 3.025908] ETA: 9:26:52.01
[Epoch 0/60] [Batch 10/6487] [loss: 12.309198] ETA: 9:37:37.31
[Epoch 0/60] [Batch 11/6487] [loss: 10.065054] ETA: 9:23:22.58
[Epoch 0/60] [Batch 12/6487] [loss: 5.186013] ETA: 9:38:36.34
[Epoch 0/60] [Batch 13/6487] [loss: 5.387490] ETA: 9:49:38.61
[Epoch 0/60] [Batch 14/6487] [loss: 5.509142] ETA: 9:21:29.86
[Epoch 0/60] [Batch 15/6487] [loss: 6.785795] ETA: 9:27:37.98
[Epoch 0/60] [Batch 16/6487] [loss: 7.973134] ETA: 9:29:15.88
[Epoch 0/60] [Batch 17/6487] [loss: 21.794090] ETA: 9:29:22.66
[Epoch 0/60] [Batch 18/6487] [loss: 4.961427] ETA: 9:33:11.30
[Epoch 0/60] [Batch 19/6487] [loss: 14.073445] ETA: 9:27:57.20
[Epoch 0/60] [Batch 20/6487] [loss: 6.013936] ETA: 9:26:16.99
[Epoch 0/60] [Batch 21/6487] [loss: 13.236930] ETA: 9:24:25.93
[Epoch 0/60] [Batch 22/6487] [loss: 8.306091] ETA: 9:36:14.12
[Epoch 0/60] [Batch 23/6487] [loss: 3.355170] ETA: 9:59:40.66
[Epoch 0/60] [Batch 24/6487] [loss: 2.904986] ETA: 9:07:01.95
[Epoch 0/60] [Batch 25/6487] [loss: 2.231014] ETA: 9:44:41.24
[Epoch 0/60] [Batch 26/6487] [loss: 6.787667] ETA: 9:43:30.81
[Epoch 0/60] [Batch 27/6487] [loss: 7.387001] ETA: 9:34:29.57
[Epoch 0/60] [Batch 28/6487] [loss: 4.501630] ETA: 9:39:13.60
[Epoch 0/60] [Batch 29/6487] [loss: 2.489206] ETA: 9:28:18.69
[Epoch 0/60] [Batch 30/6487] [loss: 3.574013] ETA: 9:29:23.56
[Epoch 0/60] [Batch 31/6487] [loss: 6.969161] ETA: 9:43:31.66
[Epoch 0/60] [Batch 32/6487] [loss: 3.075920] ETA: 9:34:19.75
[Epoch 0/60] [Batch 33/6487] [loss: 2.088318] ETA: 9:28:40.24
[Epoch 0/60] [Batch 34/6487] [loss: 3.432371] ETA: 9:32:47.99
[Epoch 0/60] [Batch 35/6487] [loss: 4.036960] ETA: 9:39:26.43
[Epoch 0/60] [Batch 36/6487] [loss: 2.675624] ETA: 9:32:24.90
[Epoch 0/60] [Batch 37/6487] [loss: 2.401388] ETA: 9:36:22.25
[Epoch 0/60] [Batch 38/6487] [loss: 2.432465] ETA: 9:29:30.37
[Epoch 0/60] [Batch 39/6487] [loss: 3.220938] ETA: 9:31:25.53
[Epoch 0/60] [Batch 40/6487] [loss: 2.949226] ETA: 9:56:07.63
[Epoch 0/60] [Batch 41/6487] [loss: 2.188518] ETA: 9:39:39.16
[Epoch 0/60] [Batch 42/6487] [loss: 2.371767] ETA: 9:21:48.31
[Epoch 0/60] [Batch 43/6487] [loss: 2.663700] ETA: 9:31:15.52
[Epoch 0/60] [Batch 44/6487] [loss: 1.953101] ETA: 9:36:49.47
[Epoch 0/60] [Batch 45/6487] [loss: 1.967318] ETA: 9:28:22.67
[Epoch 0/60] [Batch 46/6487] [loss: 1.681611] ETA: 9:40:13.14
[Epoch 0/60] [Batch 47/6487] [loss: 1.203847] ETA: 11:38:35.6
[Epoch 0/60] [Batch 48/6487] [loss: 1.616149] ETA: 10:20:08.6
[Epoch 0/60] [Batch 49/6487] [loss: 2.641722] ETA: 10:36:38.7
[Epoch 0/60] [Batch 50/6487] [loss: 2.627393] ETA: 10:16:08.0
[Epoch 0/60] [Batch 51/6487] [loss: 2.047213] ETA: 10:27:03.4
[Epoch 0/60] [Batch 52/6487] [loss: 1.524367] ETA: 10:14:40.0
[Epoch 0/60] [Batch 53/6487] [loss: 1.499193] ETA: 10:31:07.6
[Epoch 0/60] [Batch 54/6487] [loss: 1.482741] ETA: 10:04:11.4
[Epoch 0/60] [Batch 55/6487] [loss: 0.953166] ETA: 10:25:37.7
[Epoch 0/60] [Batch 56/6487] [loss: 1.346713] ETA: 10:16:22.0
[Epoch 0/60] [Batch 57/6487] [loss: 1.526123] ETA: 10:15:25.8
[Epoch 0/60] [Batch 58/6487] [loss: 1.643487] ETA: 10:17:12.1
[Epoch 0/60] [Batch 59/6487] [loss: 0.794820] ETA: 10:02:32.9
[Epoch 0/60] [Batch 60/6487] [loss: 1.490152] ETA: 10:10:54.4
[Epoch 0/60] [Batch 61/6487] [loss: 1.175192] ETA: 10:23:03.9
[Epoch 0/60] [Batch 62/6487] [loss: 1.577219] ETA: 10:32:47.5
[Epoch 0/60] [Batch 63/6487] [loss: 1.808056] ETA: 10:17:46.9
[Epoch 0/60] [Batch 64/6487] [loss: 1.146155] ETA: 10:13:44.6
[Epoch 0/60] [Batch 65/6487] [loss: 0.982462] ETA: 10:10:09.3
[Epoch 0/60] [Batch 66/6487] [loss: 1.292355] ETA: 10:14:40.8
[Epoch 0/60] [Batch 67/6487] [loss: 1.146832] ETA: 10:34:33.5
[Epoch 0/60] [Batch 68/6487] [loss: 1.015941] ETA: 10:50:58.1
[Epoch 0/60] [Batch 69/6487] [loss: 1.593252] ETA: 10:11:41.2
[Epoch 0/60] [Batch 70/6487] [loss: 1.348927] ETA: 10:40:00.1
[Epoch 0/60] [Batch 71/6487] [loss: 1.122736] ETA: 10:38:51.2
[Epoch 0/60] [Batch 72/6487] [loss: 0.911590] ETA: 10:03:13.2
[Epoch 0/60] [Batch 73/6487] [loss: 0.980177] ETA: 10:22:37.1
[Epoch 0/60] [Batch 74/6487] [loss: 1.600290] ETA: 10:14:33.7
[Epoch 0/60] [Batch 75/6487] [loss: 1.117924] ETA: 10:10:11.4
[Epoch 0/60] [Batch 76/6487] [loss: 0.995830] ETA: 10:43:06.7
[Epoch 0/60] [Batch 77/6487] [loss: 0.944761] ETA: 10:43:12.9
[Epoch 0/60] [Batch 78/6487] [loss: 1.392014] ETA: 10:56:09.9
[Epoch 0/60] [Batch 79/6487] [loss: 1.009044] ETA: 10:56:55.3
[Epoch 0/60] [Batch 80/6487] [loss: 0.989809] ETA: 10:57:33.8
[Epoch 0/60] [Batch 81/6487] [loss: 1.063357] ETA: 10:45:27.4
[Epoch 0/60] [Batch 82/6487] [loss: 1.110687] ETA: 10:43:00.7
[Epoch 0/60] [Batch 83/6487] [loss: 1.301277] ETA: 10:57:17.5
[Epoch 0/60] [Batch 84/6487] [loss: 1.338078] ETA: 10:33:27.6
[Epoch 0/60] [Batch 85/6487] [loss: 1.021930] ETA: 10:54:38.4
[Epoch 0/60] [Batch 86/6487] [loss: 1.189236] ETA: 9:46:54.90
[Epoch 0/60] [Batch 87/6487] [loss: 1.053584] ETA: 10:27:17.6
[Epoch 0/60] [Batch 88/6487] [loss: 1.019790] ETA: 10:23:49.7
[Epoch 0/60] [Batch 89/6487] [loss: 1.113650] ETA: 10:45:45.6
[Epoch 0/60] [Batch 90/6487] [loss: 1.115821] ETA: 10:03:18.8
[Epoch 0/60] [Batch 91/6487] [loss: 1.224019] ETA: 10:28:36.3
[Epoch 0/60] [Batch 92/6487] [loss: 0.975078] ETA: 10:05:19.0
[Epoch 0/60] [Batch 93/6487] [loss: 0.996540] ETA: 10:19:27.7
[Epoch 0/60] [Batch 94/6487] [loss: 1.735214] ETA: 10:09:47.4
[Epoch 0/60] [Batch 95/6487] [loss: 1.912559] ETA: 10:49:38.3
[Epoch 0/60] [Batch 96/6487] [loss: 1.418693] ETA: 9:40:47.08
[Epoch 0/60] [Batch 97/6487] [loss: 0.832918] ETA: 10:20:58.6
[Epoch 0/60] [Batch 98/6487] [loss: 1.055999] ETA: 10:36:40.3
[Epoch 0/60] [Batch 99/6487] [loss: 0.892974] ETA: 10:27:10.2
[Epoch 0/60] [Batch 100/6487] [loss: 1.045057] ETA: 10:32:06.6
[Epoch 0/60] [Batch 101/6487] [loss: 0.918750] ETA: 10:06:59.5
[Epoch 0/60] [Batch 102/6487] [loss: 0.983213] ETA: 10:28:52.6
[Epoch 0/60] [Batch 103/6487] [loss: 0.953088] ETA: 10:37:21.2
[Epoch 0/60] [Batch 104/6487] [loss: 0.895300] ETA: 10:30:34.5
[Epoch 0/60] [Batch 105/6487] [loss: 0.985907] ETA: 10:24:06.3
[Epoch 0/60] [Batch 106/6487] [loss: 0.908739] ETA: 10:44:23.4
[Epoch 0/60] [Batch 107/6487] [loss: 0.883114] ETA: 10:00:31.9
[Epoch 0/60] [Batch 108/6487] [loss: 1.048095] ETA: 10:28:56.2
[Epoch 0/60] [Batch 109/6487] [loss: 0.860237] ETA: 10:01:09.2
[Epoch 0/60] [Batch 110/6487] [loss: 0.784510] ETA: 10:20:20.8
[Epoch 0/60] [Batch 111/6487] [loss: 0.883551] ETA: 10:03:05.7
[Epoch 0/60] [Batch 112/6487] [loss: 0.847589] ETA: 10:38:30.7
[Epoch 0/60] [Batch 113/6487] [loss: 1.026890] ETA: 10:04:41.7
[Epoch 0/60] [Batch 114/6487] [loss: 0.865966] ETA: 10:20:48.9
[Epoch 0/60] [Batch 115/6487] [loss: 0.886507] ETA: 10:54:19.2
[Epoch 0/60] [Batch 116/6487] [loss: 1.015066] ETA: 10:24:06.4
[Epoch 0/60] [Batch 117/6487] [loss: 0.627025] ETA: 10:42:59.7
[Epoch 0/60] [Batch 118/6487] [loss: 0.531863] ETA: 10:09:26.0
[Epoch 0/60] [Batch 119/6487] [loss: 0.824727] ETA: 10:22:43.4
[Epoch 0/60] [Batch 120/6487] [loss: 0.969884] ETA: 10:13:28.4
[Epoch 0/60] [Batch 121/6487] [loss: 1.197793] ETA: 10:38:26.5
[Epoch 0/60] [Batch 122/6487] [loss: 0.861838] ETA: 10:33:11.2
[Epoch 0/60] [Batch 123/6487] [loss: 1.012118] ETA: 10:18:00.4
[Epoch 0/60] [Batch 124/6487] [loss: 1.073952] ETA: 10:05:49.5
[Epoch 0/60] [Batch 125/6487] [loss: 1.254514] ETA: 10:21:26.5
[Epoch 0/60] [Batch 126/6487] [loss: 0.982123] ETA: 10:05:03.1
[Epoch 0/60] [Batch 127/6487] [loss: 0.852741] ETA: 10:34:12.1
[Epoch 0/60] [Batch 128/6487] [loss: 0.679137] ETA: 10:02:40.3
[Epoch 0/60] [Batch 129/6487] [loss: 1.058274] ETA: 10:25:43.6
[Epoch 0/60] [Batch 130/6487] [loss: 0.835604] ETA: 10:29:28.4
[Epoch 0/60] [Batch 131/6487] [loss: 0.880438] ETA: 9:50:48.13
[Epoch 0/60] [Batch 132/6487] [loss: 0.898338] ETA: 10:20:42.5
[Epoch 0/60] [Batch 133/6487] [loss: 0.687976] ETA: 10:22:27.5
[Epoch 0/60] [Batch 134/6487] [loss: 0.786885] ETA: 11:09:28.3
[Epoch 0/60] [Batch 135/6487] [loss: 0.822007] ETA: 10:06:30.3
[Epoch 0/60] [Batch 136/6487] [loss: 0.738222] ETA: 10:29:12.6
[Epoch 0/60] [Batch 137/6487] [loss: 0.652328] ETA: 10:16:23.3
[Epoch 0/60] [Batch 138/6487] [loss: 0.665464] ETA: 10:28:38.8
[Epoch 0/60] [Batch 139/6487] [loss: 1.113385] ETA: 10:13:33.3
[Epoch 0/60] [Batch 140/6487] [loss: 0.879610] ETA: 10:25:42.6
[Epoch 0/60] [Batch 141/6487] [loss: 0.887465] ETA: 10:14:25.6
[Epoch 0/60] [Batch 142/6487] [loss: 0.726121] ETA: 10:24:52.6
[Epoch 0/60] [Batch 143/6487] [loss: 1.044484] ETA: 10:04:45.4
[Epoch 0/60] [Batch 144/6487] [loss: 0.772000] ETA: 10:25:05.7
[Epoch 0/60] [Batch 145/6487] [loss: 0.853456] ETA: 10:03:10.2
[Epoch 0/60] [Batch 146/6487] [loss: 0.579405] ETA: 10:45:57.9
[Epoch 0/60] [Batch 147/6487] [loss: 0.791809] ETA: 11:02:11.8
[Epoch 0/60] [Batch 148/6487] [loss: 0.645943] ETA: 10:50:36.1
[Epoch 0/60] [Batch 149/6487] [loss: 0.693026] ETA: 10:32:37.9
[Epoch 0/60] [Batch 150/6487] [loss: 0.854831] ETA: 10:39:15.1
[Epoch 0/60] [Batch 151/6487] [loss: 1.080517] ETA: 10:37:31.2
[Epoch 0/60] [Batch 152/6487] [loss: 0.767409] ETA: 10:35:13.1
[Epoch 0/60] [Batch 153/6487] [loss: 0.901002] ETA: 10:39:51.6
[Epoch 0/60] [Batch 154/6487] [loss: 0.959249] ETA: 10:24:57.1
[Epoch 0/60] [Batch 155/6487] [loss: 0.790724] ETA: 10:13:50.3
[Epoch 0/60] [Batch 156/6487] [loss: 0.635053] ETA: 10:17:41.7
[Epoch 0/60] [Batch 157/6487] [loss: 0.850679] ETA: 10:26:18.6
[Epoch 0/60] [Batch 158/6487] [loss: 0.867898] ETA: 10:19:06.6
[Epoch 0/60] [Batch 159/6487] [loss: 1.213434] ETA: 10:35:42.0
[Epoch 0/60] [Batch 160/6487] [loss: 0.837841] ETA: 10:22:49.9
[Epoch 0/60] [Batch 161/6487] [loss: 0.795945] ETA: 10:19:18.8
[Epoch 0/60] [Batch 162/6487] [loss: 0.457001] ETA: 10:07:37.6
[Epoch 0/60] [Batch 163/6487] [loss: 0.741661] ETA: 10:22:51.9
[Epoch 0/60] [Batch 164/6487] [loss: 0.965128] ETA: 10:10:22.9
[Epoch 0/60] [Batch 165/6487] [loss: 1.167171] ETA: 10:27:45.6
[Epoch 0/60] [Batch 166/6487] [loss: 0.720647] ETA: 10:31:08.7
[Epoch 0/60] [Batch 167/6487] [loss: 0.699300] ETA: 9:54:23.94
[Epoch 0/60] [Batch 168/6487] [loss: 0.747718] ETA: 10:02:24.5
[Epoch 0/60] [Batch 169/6487] [loss: 1.120415] ETA: 10:19:01.1
[Epoch 0/60] [Batch 170/6487] [loss: 0.618900] ETA: 10:16:02.2
[Epoch 0/60] [Batch 171/6487] [loss: 0.915190] ETA: 10:24:42.6
[Epoch 0/60] [Batch 172/6487] [loss: 0.888554] ETA: 10:24:06.5
[Epoch 0/60] [Batch 173/6487] [loss: 1.884247] ETA: 10:13:39.3
[Epoch 0/60] [Batch 174/6487] [loss: 0.654066] ETA: 10:29:52.9
[Epoch 0/60] [Batch 175/6487] [loss: 0.920216] ETA: 10:22:51.5
[Epoch 0/60] [Batch 176/6487] [loss: 1.100421] ETA: 10:37:10.4
[Epoch 0/60] [Batch 177/6487] [loss: 0.744130] ETA: 10:16:57.5
[Epoch 0/60] [Batch 178/6487] [loss: 1.536752] ETA: 10:34:09.7
[Epoch 0/60] [Batch 179/6487] [loss: 0.622831] ETA: 10:38:29.7
[Epoch 0/60] [Batch 180/6487] [loss: 1.525723] ETA: 10:17:22.5
[Epoch 0/60] [Batch 181/6487] [loss: 0.840026] ETA: 10:10:18.3
[Epoch 0/60] [Batch 182/6487] [loss: 0.540482] ETA: 10:19:19.3
[Epoch 0/60] [Batch 183/6487] [loss: 0.762839] ETA: 10:22:16.8
[Epoch 0/60] [Batch 184/6487] [loss: 1.019287] ETA: 10:17:41.8
[Epoch 0/60] [Batch 185/6487] [loss: 0.711923] ETA: 10:21:05.4
[Epoch 0/60] [Batch 186/6487] [loss: 1.825077] ETA: 10:47:06.3
[Epoch 0/60] [Batch 187/6487] [loss: 0.692980] ETA: 10:12:52.2
[Epoch 0/60] [Batch 188/6487] [loss: 0.770251] ETA: 10:34:18.9
[Epoch 0/60] [Batch 189/6487] [loss: 0.670388] ETA: 10:13:56.5
[Epoch 0/60] [Batch 190/6487] [loss: 0.902588] ETA: 10:20:14.0
[Epoch 0/60] [Batch 191/6487] [loss: 1.120544] ETA: 10:48:51.6
[Epoch 0/60] [Batch 192/6487] [loss: 0.978974] ETA: 10:00:38.1
[Epoch 0/60] [Batch 193/6487] [loss: 1.038157] ETA: 10:33:15.5
[Epoch 0/60] [Batch 194/6487] [loss: 1.201520] ETA: 10:21:23.4
[Epoch 0/60] [Batch 195/6487] [loss: 0.676394] ETA: 10:16:26.3
[Epoch 0/60] [Batch 196/6487] [loss: 0.782378] ETA: 11:05:03.0
[Epoch 0/60] [Batch 197/6487] [loss: 0.942979] ETA: 10:44:13.5
[Epoch 0/60] [Batch 198/6487] [loss: 0.817702] ETA: 10:34:12.0
[Epoch 0/60] [Batch 199/6487] [loss: 0.717999] ETA: 10:39:23.2
[Epoch 0/60] [Batch 200/6487] [loss: 0.724186] ETA: 11:23:42.0
[Epoch 0/60] [Batch 201/6487] [loss: 1.132111] ETA: 10:51:55.9
[Epoch 0/60] [Batch 202/6487] [loss: 0.534509] ETA: 10:49:55.8
[Epoch 0/60] [Batch 203/6487] [loss: 0.864489] ETA: 10:49:57.3
[Epoch 0/60] [Batch 204/6487] [loss: 0.633462] ETA: 11:08:51.5
[Epoch 0/60] [Batch 205/6487] [loss: 1.055423] ETA: 10:42:30.2
[Epoch 0/60] [Batch 206/6487] [loss: 0.624508] ETA: 10:37:51.4
[Epoch 0/60] [Batch 207/6487] [loss: 1.212910] ETA: 10:09:34.7
[Epoch 0/60] [Batch 208/6487] [loss: 0.859067] ETA: 11:18:57.3
[Epoch 0/60] [Batch 209/6487] [loss: 1.241399] ETA: 10:52:16.1
[Epoch 0/60] [Batch 210/6487] [loss: 0.820312] ETA: 10:47:14.7
[Epoch 0/60] [Batch 211/6487] [loss: 1.350565] ETA: 9:49:06.52
[Epoch 0/60] [Batch 212/6487] [loss: 1.156286] ETA: 9:52:48.83
[Epoch 0/60] [Batch 213/6487] [loss: 0.752970] ETA: 9:37:44.00
[Epoch 0/60] [Batch 214/6487] [loss: 0.813018] ETA: 9:48:29.24
[Epoch 0/60] [Batch 215/6487] [loss: 0.824731] ETA: 9:22:10.98
[Epoch 0/60] [Batch 216/6487] [loss: 0.796811] ETA: 9:38:01.26
[Epoch 0/60] [Batch 217/6487] [loss: 0.696665] ETA: 9:35:45.67
[Epoch 0/60] [Batch 218/6487] [loss: 0.447014] ETA: 9:24:07.86
[Epoch 0/60] [Batch 219/6487] [loss: 0.681502] ETA: 9:35:43.17
[Epoch 0/60] [Batch 220/6487] [loss: 0.742660] ETA: 9:29:48.43
[Epoch 0/60] [Batch 221/6487] [loss: 0.679782] ETA: 9:29:23.58
[Epoch 0/60] [Batch 222/6487] [loss: 0.976053] ETA: 9:29:30.91
[Epoch 0/60] [Batch 223/6487] [loss: 0.488869] ETA: 9:44:38.23
[Epoch 0/60] [Batch 224/6487] [loss: 1.498371] ETA: 9:09:15.60
[Epoch 0/60] [Batch 225/6487] [loss: 1.302691] ETA: 9:37:45.34
[Epoch 0/60] [Batch 226/6487] [loss: 0.797777] ETA: 9:25:07.44
[Epoch 0/60] [Batch 227/6487] [loss: 0.677790] ETA: 9:33:49.32
[Epoch 0/60] [Batch 228/6487] [loss: 0.637713] ETA: 9:50:25.29
[Epoch 0/60] [Batch 229/6487] [loss: 0.889256] ETA: 9:27:13.03
[Epoch 0/60] [Batch 230/6487] [loss: 0.720252] ETA: 9:54:05.27
[Epoch 0/60] [Batch 231/6487] [loss: 0.571510] ETA: 9:31:34.49
[Epoch 0/60] [Batch 232/6487] [loss: 1.007696] ETA: 9:24:51.16
[Epoch 0/60] [Batch 233/6487] [loss: 0.838222] ETA: 9:36:50.00
[Epoch 0/60] [Batch 234/6487] [loss: 0.906698] ETA: 9:29:06.21
[Epoch 0/60] [Batch 235/6487] [loss: 0.884018] ETA: 9:31:53.33
[Epoch 0/60] [Batch 236/6487] [loss: 1.305484] ETA: 9:28:09.55
[Epoch 0/60] [Batch 237/6487] [loss: 0.827132] ETA: 9:33:12.82
[Epoch 0/60] [Batch 238/6487] [loss: 0.673997] ETA: 9:23:57.49
[Epoch 0/60] [Batch 239/6487] [loss: 1.168546] ETA: 9:33:37.40
[Epoch 0/60] [Batch 240/6487] [loss: 0.673849] ETA: 9:26:02.80
[Epoch 0/60] [Batch 241/6487] [loss: 0.611331] ETA: 9:28:35.45
[Epoch 0/60] [Batch 242/6487] [loss: 0.684894] ETA: 9:47:41.25
[Epoch 0/60] [Batch 243/6487] [loss: 0.779954] ETA: 9:20:57.24
[Epoch 0/60] [Batch 244/6487] [loss: 0.607989] ETA: 9:34:10.53
[Epoch 0/60] [Batch 245/6487] [loss: 0.700848] ETA: 9:23:52.34
[Epoch 0/60] [Batch 246/6487] [loss: 0.554530] ETA: 9:30:38.08
[Epoch 0/60] [Batch 247/6487] [loss: 0.684127] ETA: 9:25:21.75
[Epoch 0/60] [Batch 248/6487] [loss: 0.801703] ETA: 9:24:26.21
[Epoch 0/60] [Batch 249/6487] [loss: 0.987106] ETA: 9:37:14.73
[Epoch 0/60] [Batch 250/6487] [loss: 0.592781] ETA: 9:27:11.29
[Epoch 0/60] [Batch 251/6487] [loss: 0.626237] ETA: 9:37:52.76
[Epoch 0/60] [Batch 252/6487] [loss: 0.594775] ETA: 9:25:03.32
[Epoch 0/60] [Batch 253/6487] [loss: 0.802563] ETA: 9:32:10.85
[Epoch 0/60] [Batch 254/6487] [loss: 0.683787] ETA: 9:27:32.46
[Epoch 0/60] [Batch 255/6487] [loss: 0.477780] ETA: 9:27:43.96
[Epoch 0/60] [Batch 256/6487] [loss: 0.469477] ETA: 9:35:46.66
[Epoch 0/60] [Batch 257/6487] [loss: 0.666991] ETA: 9:41:20.33
[Epoch 0/60] [Batch 258/6487] [loss: 0.831194] ETA: 9:55:46.02
[Epoch 0/60] [Batch 259/6487] [loss: 0.611546] ETA: 8:54:50.66
[Epoch 0/60] [Batch 260/6487] [loss: 0.481413] ETA: 9:49:23.49
[Epoch 0/60] [Batch 261/6487] [loss: 0.455367] ETA: 9:20:31.57
[Epoch 0/60] [Batch 262/6487] [loss: 0.882978] ETA: 9:40:23.49
[Epoch 0/60] [Batch 263/6487] [loss: 0.660345] ETA: 9:21:08.02
[Epoch 0/60] [Batch 264/6487] [loss: 0.509450] ETA: 9:24:46.23
[Epoch 0/60] [Batch 265/6487] [loss: 0.503500] ETA: 9:44:31.75
[Epoch 0/60] [Batch 266/6487] [loss: 0.637106] ETA: 9:26:44.57
[Epoch 0/60] [Batch 267/6487] [loss: 0.559911] ETA: 9:37:30.28
[Epoch 0/60] [Batch 268/6487] [loss: 0.732765] ETA: 9:40:39.46
[Epoch 0/60] [Batch 269/6487] [loss: 0.528515] ETA: 9:33:56.26
[Epoch 0/60] [Batch 270/6487] [loss: 0.436939] ETA: 9:22:23.83
[Epoch 0/60] [Batch 271/6487] [loss: 0.581162] ETA: 9:24:55.55
[Epoch 0/60] [Batch 272/6487] [loss: 0.654114] ETA: 9:33:01.10
[Epoch 0/60] [Batch 273/6487] [loss: 0.809998] ETA: 9:28:08.72
[Epoch 0/60] [Batch 274/6487] [loss: 0.694174] ETA: 9:53:12.09
[Epoch 0/60] [Batch 275/6487] [loss: 0.540107] ETA: 10:31:15.0
[Epoch 0/60] [Batch 276/6487] [loss: 0.618157] ETA: 9:47:58.20
[Epoch 0/60] [Batch 277/6487] [loss: 0.645564] ETA: 9:29:22.18
[Epoch 0/60] [Batch 278/6487] [loss: 0.553072] ETA: 9:51:20.17
[Epoch 0/60] [Batch 279/6487] [loss: 0.705511] ETA: 9:34:53.33
[Epoch 0/60] [Batch 280/6487] [loss: 0.499048] ETA: 9:47:00.81
[Epoch 0/60] [Batch 281/6487] [loss: 0.580542] ETA: 9:32:11.90
[Epoch 0/60] [Batch 282/6487] [loss: 0.550011] ETA: 9:41:57.31
[Epoch 0/60] [Batch 283/6487] [loss: 0.469673] ETA: 9:38:43.51
[Epoch 0/60] [Batch 284/6487] [loss: 0.378703] ETA: 9:33:46.40
[Epoch 0/60] [Batch 285/6487] [loss: 0.523195] ETA: 9:46:10.28
[Epoch 0/60] [Batch 286/6487] [loss: 0.527786] ETA: 9:14:02.73
[Epoch 0/60] [Batch 287/6487] [loss: 0.463384] ETA: 9:55:50.21
[Epoch 0/60] [Batch 288/6487] [loss: 0.901026] ETA: 10:06:17.5
[Epoch 0/60] [Batch 289/6487] [loss: 0.389526] ETA: 9:24:40.44
[Epoch 0/60] [Batch 290/6487] [loss: 0.429652] ETA: 9:53:53.66
[Epoch 0/60] [Batch 291/6487] [loss: 0.639763] ETA: 9:36:48.37Traceback (most recent call last):
File "/home/star/whaiDir/PFCFuse/train.py", line 151, in <module>
feature_V_B, feature_V_D, _ = DIDF_Encoder(data_VIS)
File "/home/star/anaconda3/envs/pfcfuse/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/home/star/anaconda3/envs/pfcfuse/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
File "/home/star/anaconda3/envs/pfcfuse/lib/python3.8/site-packages/torch/nn/parallel/data_parallel.py", line 170, in forward
for t in chain(self.module.parameters(), self.module.buffers()):
File "/home/star/anaconda3/envs/pfcfuse/lib/python3.8/site-packages/torch/nn/modules/module.py", line 2310, in buffers
for _, buf in self.named_buffers(recurse=recurse):
File "/home/star/anaconda3/envs/pfcfuse/lib/python3.8/site-packages/torch/nn/modules/module.py", line 2337, in named_buffers
yield from gen
File "/home/star/anaconda3/envs/pfcfuse/lib/python3.8/site-packages/torch/nn/modules/module.py", line 2223, in _named_members
for module_prefix, module in modules:
File "/home/star/anaconda3/envs/pfcfuse/lib/python3.8/site-packages/torch/nn/modules/module.py", line 2435, in named_modules
yield from module.named_modules(memo, submodule_prefix, remove_duplicate)
File "/home/star/anaconda3/envs/pfcfuse/lib/python3.8/site-packages/torch/nn/modules/module.py", line 2435, in named_modules
yield from module.named_modules(memo, submodule_prefix, remove_duplicate)
File "/home/star/anaconda3/envs/pfcfuse/lib/python3.8/site-packages/torch/nn/modules/module.py", line 2435, in named_modules
yield from module.named_modules(memo, submodule_prefix, remove_duplicate)
[Previous line repeated 2 more times]
KeyboardInterrupt