pfcfuse/componets/ConvSSM.py

548 lines
21 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import time
import math
from functools import partial
from typing import Optional, Callable
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from einops import rearrange, repeat
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
try:
from mamba_ssm.ops.selective_scan_interface import selective_scan_fn, selective_scan_ref
except:
pass
# an alternative for mamba_ssm (in which causal_conv1d is needed)
try:
from selective_scan import selective_scan_fn as selective_scan_fn_v1
from selective_scan import selective_scan_ref as selective_scan_ref_v1
except:
pass
DropPath.__repr__ = lambda self: f"timm.DropPath({self.drop_prob})"
"""
CNN在远程建模能力方面的局限性使它们无法有效地提取图像中的特征而Transformers则受到其二次计算复杂性的阻碍。最近的研究表明以Mamba为代表的状态空间模型SSM可以在保持线性计算复杂度的同时有效地模拟长程相互作用。
我们介绍了一个新颖的Conv-SSM模块。Conv-SSM将卷积层的局部特征提取能力与SSM捕获长程依赖性的能力相结合。
"""
def flops_selective_scan_ref(B=1, L=256, D=768, N=16, with_D=True, with_Z=False, with_Group=True, with_complex=False):
"""
u: r(B D L)
delta: r(B D L)
A: r(D N)
B: r(B N L)
C: r(B N L)
D: r(D)
z: r(B D L)
delta_bias: r(D), fp32
ignores:
[.float(), +, .softplus, .shape, new_zeros, repeat, stack, to(dtype), silu]
"""
import numpy as np
# fvcore.nn.jit_handles
def get_flops_einsum(input_shapes, equation):
np_arrs = [np.zeros(s) for s in input_shapes]
optim = np.einsum_path(equation, *np_arrs, optimize="optimal")[1]
for line in optim.split("\n"):
if "optimized flop" in line.lower():
# divided by 2 because we count MAC (multiply-add counted as one flop)
flop = float(np.floor(float(line.split(":")[-1]) / 2))
return flop
assert not with_complex
flops = 0 # below code flops = 0
if False:
...
"""
dtype_in = u.dtype
u = u.float()
delta = delta.float()
if delta_bias is not None:
delta = delta + delta_bias[..., None].float()
if delta_softplus:
delta = F.softplus(delta)
batch, dim, dstate = u.shape[0], A.shape[0], A.shape[1]
is_variable_B = B.dim() >= 3
is_variable_C = C.dim() >= 3
if A.is_complex():
if is_variable_B:
B = torch.view_as_complex(rearrange(B.float(), "... (L two) -> ... L two", two=2))
if is_variable_C:
C = torch.view_as_complex(rearrange(C.float(), "... (L two) -> ... L two", two=2))
else:
B = B.float()
C = C.float()
x = A.new_zeros((batch, dim, dstate))
ys = []
"""
flops += get_flops_einsum([[B, D, L], [D, N]], "bdl,dn->bdln")
if with_Group:
flops += get_flops_einsum([[B, D, L], [B, N, L], [B, D, L]], "bdl,bnl,bdl->bdln")
else:
flops += get_flops_einsum([[B, D, L], [B, D, N, L], [B, D, L]], "bdl,bdnl,bdl->bdln")
if False:
...
"""
deltaA = torch.exp(torch.einsum('bdl,dn->bdln', delta, A))
if not is_variable_B:
deltaB_u = torch.einsum('bdl,dn,bdl->bdln', delta, B, u)
else:
if B.dim() == 3:
deltaB_u = torch.einsum('bdl,bnl,bdl->bdln', delta, B, u)
else:
B = repeat(B, "B G N L -> B (G H) N L", H=dim // B.shape[1])
deltaB_u = torch.einsum('bdl,bdnl,bdl->bdln', delta, B, u)
if is_variable_C and C.dim() == 4:
C = repeat(C, "B G N L -> B (G H) N L", H=dim // C.shape[1])
last_state = None
"""
in_for_flops = B * D * N
if with_Group:
in_for_flops += get_flops_einsum([[B, D, N], [B, D, N]], "bdn,bdn->bd")
else:
in_for_flops += get_flops_einsum([[B, D, N], [B, N]], "bdn,bn->bd")
flops += L * in_for_flops
if False:
...
"""
for i in range(u.shape[2]):
x = deltaA[:, :, i] * x + deltaB_u[:, :, i]
if not is_variable_C:
y = torch.einsum('bdn,dn->bd', x, C)
else:
if C.dim() == 3:
y = torch.einsum('bdn,bn->bd', x, C[:, :, i])
else:
y = torch.einsum('bdn,bdn->bd', x, C[:, :, :, i])
if i == u.shape[2] - 1:
last_state = x
if y.is_complex():
y = y.real * 2
ys.append(y)
y = torch.stack(ys, dim=2) # (batch dim L)
"""
if with_D:
flops += B * D * L
if with_Z:
flops += B * D * L
if False:
...
"""
out = y if D is None else y + u * rearrange(D, "d -> d 1")
if z is not None:
out = out * F.silu(z)
out = out.to(dtype=dtype_in)
"""
return flops
class PatchEmbed2D(nn.Module):
r""" Image to Patch Embedding
Args:
patch_size (int): Patch token size. Default: 4.
in_chans (int): Number of input image channels. Default: 3.
embed_dim (int): Number of linear projection output channels. Default: 96.
norm_layer (nn.Module, optional): Normalization layer. Default: None
"""
def __init__(self, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None, **kwargs):
super().__init__()
if isinstance(patch_size, int):
patch_size = (patch_size, patch_size)
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
if norm_layer is not None:
self.norm = norm_layer(embed_dim)
else:
self.norm = None
def forward(self, x):
x = self.proj(x).permute(0, 2, 3, 1)
if self.norm is not None:
x = self.norm(x)
return x
class PatchMerging2D(nn.Module):
r""" Patch Merging Layer.
Args:
input_resolution (tuple[int]): Resolution of input feature.
dim (int): Number of input channels.
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
"""
def __init__(self, dim, norm_layer=nn.LayerNorm):
super().__init__()
self.dim = dim
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
self.norm = norm_layer(4 * dim)
def forward(self, x):
B, H, W, C = x.shape
SHAPE_FIX = [-1, -1]
if (W % 2 != 0) or (H % 2 != 0):
print(f"Warning, x.shape {x.shape} is not match even ===========", flush=True)
SHAPE_FIX[0] = H // 2
SHAPE_FIX[1] = W // 2
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
if SHAPE_FIX[0] > 0:
x0 = x0[:, :SHAPE_FIX[0], :SHAPE_FIX[1], :]
x1 = x1[:, :SHAPE_FIX[0], :SHAPE_FIX[1], :]
x2 = x2[:, :SHAPE_FIX[0], :SHAPE_FIX[1], :]
x3 = x3[:, :SHAPE_FIX[0], :SHAPE_FIX[1], :]
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
x = x.view(B, H // 2, W // 2, 4 * C) # B H/2*W/2 4*C
x = self.norm(x)
x = self.reduction(x)
return x
class PatchExpand2D(nn.Module):
def __init__(self, dim, dim_scale=2, norm_layer=nn.LayerNorm):
super().__init__()
self.dim = dim * 2
self.dim_scale = dim_scale
self.expand = nn.Linear(self.dim, dim_scale * self.dim, bias=False)
self.norm = norm_layer(self.dim // dim_scale)
def forward(self, x):
B, H, W, C = x.shape
x = self.expand(x)
x = rearrange(x, 'b h w (p1 p2 c)-> b (h p1) (w p2) c', p1=self.dim_scale, p2=self.dim_scale,
c=C // self.dim_scale)
x = self.norm(x)
return x
class Final_PatchExpand2D(nn.Module):
def __init__(self, dim, dim_scale=4, norm_layer=nn.LayerNorm):
super().__init__()
self.dim = dim
self.dim_scale = dim_scale
self.expand = nn.Linear(self.dim, dim_scale * self.dim, bias=False)
self.norm = norm_layer(self.dim // dim_scale)
def forward(self, x):
B, H, W, C = x.shape
x = self.expand(x)
x = rearrange(x, 'b h w (p1 p2 c)-> b (h p1) (w p2) c', p1=self.dim_scale, p2=self.dim_scale,
c=C // self.dim_scale)
x = self.norm(x)
return x
class SS2D(
nn.Module): # SS2DState Space Model 2D它是实现状态空间模型SSM在视觉任务中应用的核心部分。这个类将状态空间模型的长程依赖性建模能力与卷积操作结合起来旨在捕获图像中的长程相互作用同时保持对局部特征的敏感度。
def __init__(
self,
d_model,
d_state=16,
# d_state="auto", # 20240109
d_conv=3,
expand=2,
dt_rank="auto",
dt_min=0.001,
dt_max=0.1,
dt_init="random",
dt_scale=1.0,
dt_init_floor=1e-4,
dropout=0.,
conv_bias=True,
bias=False,
device=None,
dtype=None,
**kwargs,
):
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.d_model = d_model
self.d_state = d_state
# self.d_state = math.ceil(self.d_model / 6) if d_state == "auto" else d_model # 20240109
self.d_conv = d_conv
self.expand = expand
self.d_inner = int(self.expand * self.d_model)
self.dt_rank = math.ceil(self.d_model / 16) if dt_rank == "auto" else dt_rank
self.in_proj = nn.Linear(self.d_model, self.d_inner * 2, bias=bias, **factory_kwargs)
self.conv2d = nn.Conv2d(
in_channels=self.d_inner,
out_channels=self.d_inner,
groups=self.d_inner,
bias=conv_bias,
kernel_size=d_conv,
padding=(d_conv - 1) // 2,
**factory_kwargs,
)
self.act = nn.SiLU()
self.x_proj = (
nn.Linear(self.d_inner, (self.dt_rank + self.d_state * 2), bias=False, **factory_kwargs),
nn.Linear(self.d_inner, (self.dt_rank + self.d_state * 2), bias=False, **factory_kwargs),
nn.Linear(self.d_inner, (self.dt_rank + self.d_state * 2), bias=False, **factory_kwargs),
nn.Linear(self.d_inner, (self.dt_rank + self.d_state * 2), bias=False, **factory_kwargs),
)
self.x_proj_weight = nn.Parameter(torch.stack([t.weight for t in self.x_proj], dim=0)) # (K=4, N, inner)
del self.x_proj
self.dt_projs = (
self.dt_init(self.dt_rank, self.d_inner, dt_scale, dt_init, dt_min, dt_max, dt_init_floor,
**factory_kwargs),
self.dt_init(self.dt_rank, self.d_inner, dt_scale, dt_init, dt_min, dt_max, dt_init_floor,
**factory_kwargs),
self.dt_init(self.dt_rank, self.d_inner, dt_scale, dt_init, dt_min, dt_max, dt_init_floor,
**factory_kwargs),
self.dt_init(self.dt_rank, self.d_inner, dt_scale, dt_init, dt_min, dt_max, dt_init_floor,
**factory_kwargs),
)
self.dt_projs_weight = nn.Parameter(torch.stack([t.weight for t in self.dt_projs], dim=0)) # (K=4, inner, rank)
self.dt_projs_bias = nn.Parameter(torch.stack([t.bias for t in self.dt_projs], dim=0)) # (K=4, inner)
del self.dt_projs
self.A_logs = self.A_log_init(self.d_state, self.d_inner, copies=4, merge=True) # (K=4, D, N)
self.Ds = self.D_init(self.d_inner, copies=4, merge=True) # (K=4, D, N)
# self.selective_scan = selective_scan_fn
self.forward_core = self.forward_corev0
self.out_norm = nn.LayerNorm(self.d_inner)
self.out_proj = nn.Linear(self.d_inner, self.d_model, bias=bias, **factory_kwargs)
self.dropout = nn.Dropout(dropout) if dropout > 0. else None
@staticmethod
def dt_init(dt_rank, d_inner, dt_scale=1.0, dt_init="random", dt_min=0.001, dt_max=0.1, dt_init_floor=1e-4,
**factory_kwargs):
dt_proj = nn.Linear(dt_rank, d_inner, bias=True, **factory_kwargs)
# Initialize special dt projection to preserve variance at initialization
dt_init_std = dt_rank ** -0.5 * dt_scale
if dt_init == "constant":
nn.init.constant_(dt_proj.weight, dt_init_std)
elif dt_init == "random":
nn.init.uniform_(dt_proj.weight, -dt_init_std, dt_init_std)
else:
raise NotImplementedError
# Initialize dt bias so that F.softplus(dt_bias) is between dt_min and dt_max
dt = torch.exp(
torch.rand(d_inner, **factory_kwargs) * (math.log(dt_max) - math.log(dt_min))
+ math.log(dt_min)
).clamp(min=dt_init_floor)
# Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759
inv_dt = dt + torch.log(-torch.expm1(-dt))
with torch.no_grad():
dt_proj.bias.copy_(inv_dt)
# Our initialization would set all Linear.bias to zero, need to mark this one as _no_reinit
dt_proj.bias._no_reinit = True
return dt_proj
@staticmethod
def A_log_init(d_state, d_inner, copies=1, device=None, merge=True):
# S4D real initialization
A = repeat(
torch.arange(1, d_state + 1, dtype=torch.float32, device=device),
"n -> d n",
d=d_inner,
).contiguous()
A_log = torch.log(A) # Keep A_log in fp32
if copies > 1:
A_log = repeat(A_log, "d n -> r d n", r=copies)
if merge:
A_log = A_log.flatten(0, 1)
A_log = nn.Parameter(A_log)
A_log._no_weight_decay = True
return A_log
@staticmethod
def D_init(d_inner, copies=1, device=None, merge=True):
# D "skip" parameter
D = torch.ones(d_inner, device=device)
if copies > 1:
D = repeat(D, "n1 -> r n1", r=copies)
if merge:
D = D.flatten(0, 1)
D = nn.Parameter(D) # Keep in fp32
D._no_weight_decay = True
return D
def forward_corev0(self, x: torch.Tensor):
self.selective_scan = selective_scan_fn
B, C, H, W = x.shape
L = H * W
K = 4
x_hwwh = torch.stack([x.view(B, -1, L), torch.transpose(x, dim0=2, dim1=3).contiguous().view(B, -1, L)],
dim=1).view(B, 2, -1, L)
xs = torch.cat([x_hwwh, torch.flip(x_hwwh, dims=[-1])], dim=1) # (b, k, d, l)
x_dbl = torch.einsum("b k d l, k c d -> b k c l", xs.view(B, K, -1, L), self.x_proj_weight)
# x_dbl = x_dbl + self.x_proj_bias.view(1, K, -1, 1)
dts, Bs, Cs = torch.split(x_dbl, [self.dt_rank, self.d_state, self.d_state], dim=2)
dts = torch.einsum("b k r l, k d r -> b k d l", dts.view(B, K, -1, L), self.dt_projs_weight)
# dts = dts + self.dt_projs_bias.view(1, K, -1, 1)
xs = xs.float().view(B, -1, L) # (b, k * d, l)
dts = dts.contiguous().float().view(B, -1, L) # (b, k * d, l)
Bs = Bs.float().view(B, K, -1, L) # (b, k, d_state, l)
Cs = Cs.float().view(B, K, -1, L) # (b, k, d_state, l)
Ds = self.Ds.float().view(-1) # (k * d)
As = -torch.exp(self.A_logs.float()).view(-1, self.d_state) # (k * d, d_state)
dt_projs_bias = self.dt_projs_bias.float().view(-1) # (k * d)
out_y = self.selective_scan(
xs, dts,
As, Bs, Cs, Ds, z=None,
delta_bias=dt_projs_bias,
delta_softplus=True,
return_last_state=False,
).view(B, K, -1, L)
assert out_y.dtype == torch.float
inv_y = torch.flip(out_y[:, 2:4], dims=[-1]).view(B, 2, -1, L)
wh_y = torch.transpose(out_y[:, 1].view(B, -1, W, H), dim0=2, dim1=3).contiguous().view(B, -1, L)
invwh_y = torch.transpose(inv_y[:, 1].view(B, -1, W, H), dim0=2, dim1=3).contiguous().view(B, -1, L)
return out_y[:, 0], inv_y[:, 0], wh_y, invwh_y
# an alternative to forward_corev1
def forward_corev1(self, x: torch.Tensor):
self.selective_scan = selective_scan_fn_v1
B, C, H, W = x.shape
L = H * W
K = 4
x_hwwh = torch.stack([x.view(B, -1, L), torch.transpose(x, dim0=2, dim1=3).contiguous().view(B, -1, L)],
dim=1).view(B, 2, -1, L)
xs = torch.cat([x_hwwh, torch.flip(x_hwwh, dims=[-1])], dim=1) # (b, k, d, l)
x_dbl = torch.einsum("b k d l, k c d -> b k c l", xs.view(B, K, -1, L), self.x_proj_weight)
# x_dbl = x_dbl + self.x_proj_bias.view(1, K, -1, 1)
dts, Bs, Cs = torch.split(x_dbl, [self.dt_rank, self.d_state, self.d_state], dim=2)
dts = torch.einsum("b k r l, k d r -> b k d l", dts.view(B, K, -1, L), self.dt_projs_weight)
# dts = dts + self.dt_projs_bias.view(1, K, -1, 1)
xs = xs.float().view(B, -1, L) # (b, k * d, l)
dts = dts.contiguous().float().view(B, -1, L) # (b, k * d, l)
Bs = Bs.float().view(B, K, -1, L) # (b, k, d_state, l)
Cs = Cs.float().view(B, K, -1, L) # (b, k, d_state, l)
Ds = self.Ds.float().view(-1) # (k * d)
As = -torch.exp(self.A_logs.float()).view(-1, self.d_state) # (k * d, d_state)
dt_projs_bias = self.dt_projs_bias.float().view(-1) # (k * d)
out_y = self.selective_scan(
xs, dts,
As, Bs, Cs, Ds,
delta_bias=dt_projs_bias,
delta_softplus=True,
).view(B, K, -1, L)
assert out_y.dtype == torch.float
inv_y = torch.flip(out_y[:, 2:4], dims=[-1]).view(B, 2, -1, L)
wh_y = torch.transpose(out_y[:, 1].view(B, -1, W, H), dim0=2, dim1=3).contiguous().view(B, -1, L)
invwh_y = torch.transpose(inv_y[:, 1].view(B, -1, W, H), dim0=2, dim1=3).contiguous().view(B, -1, L)
return out_y[:, 0], inv_y[:, 0], wh_y, invwh_y
def forward(self, x: torch.Tensor, **kwargs):
B, H, W, C = x.shape
xz = self.in_proj(x)
x, z = xz.chunk(2, dim=-1) # (b, h, w, d)
x = x.permute(0, 3, 1, 2).contiguous()
x = self.act(self.conv2d(x)) # (b, d, h, w)
y1, y2, y3, y4 = self.forward_core(x)
assert y1.dtype == torch.float32
y = y1 + y2 + y3 + y4
y = torch.transpose(y, dim0=1, dim1=2).contiguous().view(B, H, W, -1)
y = self.out_norm(y)
y = y * F.silu(z)
out = self.out_proj(y)
if self.dropout is not None:
out = self.dropout(out)
return out
class ConvSSM(nn.Module):
"""
这个类组合了自注意力机制和卷积操作,旨在融合自注意力的全局感知能力和卷积的局部特征提取能力。
输入特征被分成两部分一部分通过SS2D自注意力模块处理另一部分通过一系列卷积层处理。处理后的两部分再次合并并通过最终的卷积层生成输出特征。
"""
def __init__(
self,
hidden_dim: int = 0,
drop_path: float = 0,
norm_layer: Callable[..., torch.nn.Module] = partial(nn.LayerNorm, eps=1e-6),
attn_drop_rate: float = 0,
d_state: int = 16,
**kwargs,
):
super().__init__()
self.ln_1 = norm_layer(hidden_dim // 2)
self.self_attention = SS2D(d_model=hidden_dim // 2, dropout=attn_drop_rate, d_state=d_state, **kwargs)
self.drop_path = DropPath(drop_path)
self.conv33conv33conv11 = nn.Sequential(
nn.Conv2d(in_channels=hidden_dim // 2, out_channels=hidden_dim // 2, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(hidden_dim // 2),
nn.ReLU(),
nn.Conv2d(in_channels=hidden_dim // 2, out_channels=hidden_dim // 2, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(hidden_dim // 2),
nn.ReLU(),
nn.Conv2d(in_channels=hidden_dim // 2, out_channels=hidden_dim // 2, kernel_size=1, stride=1)
)
self.finalconv11 = nn.Conv2d(in_channels=hidden_dim, out_channels=hidden_dim, kernel_size=1, stride=1)
def forward(self, input: torch.Tensor):
input_left, input_right = input.chunk(2, dim=-1)
x = input_right + self.drop_path(self.self_attention(self.ln_1(input_right)))
input_left = input_left.permute(0, 3, 1, 2).contiguous()
input_left = self.conv33conv33conv11(input_left)
x = x.permute(0, 3, 1, 2).contiguous()
output = torch.cat((input_left, x), dim=1)
output = self.finalconv11(output).permute(0, 2, 3, 1).contiguous()
return output + input
if __name__ == '__main__':
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 初始化ConvSSM模块hidden_dim为128
block = ConvSSM(hidden_dim=128).to(device)
# 生成随机输入张量,尺寸为[批次大小, 高度, 宽度, 通道数]
# 这里批次大小为4高度和宽度为32通道数为128符合hidden_dim的大小
input_tensor = torch.rand(4, 32, 32, 128).to(device)
# 前向传递输入张量通过ConvSSM模块
output = block(input_tensor)
# 打印输入和输出张量的尺寸
print("Input tensor size:", input_tensor.size())
print("Output tensor size:", output.size())