pfcfuse/utils/loss.py
2024-06-03 19:36:29 +08:00

114 lines
4.0 KiB
Python

import torch
import torch.nn as nn
import torch.nn.functional as F
class Fusionloss(nn.Module):
def __init__(self):
super(Fusionloss, self).__init__()
self.sobelconv=Sobelxy()
def forward(self,image_vis,image_ir,generate_img):
# 加
loss_rmi_v=relative_diff_loss(image_vis, generate_img)
loss_rmi_i=relative_diff_loss(image_ir, generate_img)
x_rmi_max=torch.max(loss_rmi_v, loss_rmi_i)
loss_rmi=F.l1_loss(x_rmi_max, generate_img)
# 加
image_y=image_vis[:,:1,:,:]
x_in_max=torch.max(image_y,image_ir)
loss_in=F.l1_loss(x_in_max,generate_img)
y_grad=self.sobelconv(image_y)
ir_grad=self.sobelconv(image_ir)
generate_img_grad=self.sobelconv(generate_img)
x_grad_joint=torch.max(y_grad,ir_grad)
loss_grad=F.l1_loss(x_grad_joint,generate_img_grad)
# loss_total=loss_in+10*loss_grad
#改
loss_total = loss_in + 10 * loss_grad + loss_rmi
return loss_total,loss_in,loss_grad
class Sobelxy(nn.Module):
def __init__(self):
super(Sobelxy, self).__init__()
kernelx = [[-1, 0, 1],
[-2,0 , 2],
[-1, 0, 1]]
kernely = [[1, 2, 1],
[0,0 , 0],
[-1, -2, -1]]
kernelx = torch.FloatTensor(kernelx).unsqueeze(0).unsqueeze(0)
kernely = torch.FloatTensor(kernely).unsqueeze(0).unsqueeze(0)
self.weightx = nn.Parameter(data=kernelx, requires_grad=False).cuda()
self.weighty = nn.Parameter(data=kernely, requires_grad=False).cuda()
def forward(self,x):
sobelx=F.conv2d(x, self.weightx, padding=1)
sobely=F.conv2d(x, self.weighty, padding=1)
return torch.abs(sobelx)+torch.abs(sobely)
def cc(img1, img2):
eps = torch.finfo(torch.float32).eps
"""Correlation coefficient for (N, C, H, W) image; torch.float32 [0.,1.]."""
N, C, _, _ = img1.shape
img1 = img1.reshape(N, C, -1)
img2 = img2.reshape(N, C, -1)
img1 = img1 - img1.mean(dim=-1, keepdim=True)
img2 = img2 - img2.mean(dim=-1, keepdim=True)
cc = torch.sum(img1 * img2, dim=-1) / (eps + torch.sqrt(torch.sum(img1 **
2, dim=-1)) * torch.sqrt(torch.sum(img2**2, dim=-1)))
cc = torch.clamp(cc, -1., 1.)
return cc.mean()
# def dice_coeff(img1, img2):
# smooth = 1.
# num = img1.size(0)
# m1 = img1.view(num, -1) # Flatten
# m2 = img2.view(num, -1) # Flatten
# intersection = (m1 * m2).sum()
#
# return 1 - (2. * intersection + smooth) / (m1.sum() + m2.sum() + smooth)
# 用来衡量图像之间的平均灰度差异
def relative_diff_loss(img1, img2):
# 计算图像的平均灰度值
mean_intensity_img1 = torch.mean(img1)
mean_intensity_img2 = torch.mean(img2)
# print("mean_intensity_img1")
# print(mean_intensity_img1)
# print("mean_intensity_img2")
# print(mean_intensity_img2)
# 计算relative_diff
epsilon = 1e-10 # 防止除零错误
relative_diff = abs((mean_intensity_img1 - mean_intensity_img2) / (mean_intensity_img1 + epsilon))
return relative_diff
# 互信息MI损失
# def mutual_information_loss(img1, img2):
# # 计算 X 和 Y 的熵
# entropy_img1 = -torch.mean(torch.sum(F.softmax(img1, dim=-1) * F.log_softmax(img1, dim=-1), dim=-1))
# entropy_img2 = -torch.mean(torch.sum(F.softmax(img2, dim=-1) * F.log_softmax(img2, dim=-1), dim=-1))
#
# # 计算 X 和 Y 的联合熵
# joint_entropy = -torch.mean(torch.sum(F.softmax(img1, dim=-1) * F.log_softmax(img2, dim=-1), dim=-1))
#
# # 计算互信息损失
# mutual_information = entropy_img1 + entropy_img2 - joint_entropy
#
# return mutual_information
# # 余弦相似度计算
# def cosine_similarity(img1, img2):
# # Flatten the tensors
# img1_flat = img1.view(-1)
# img2_flat = img2.view(-1)
#
# # Calculate cosine similarity
# similarity = Fine_similarity(img1_flat, img2_flat, dim=0)
#
# loss = torch.abs(similarity - 1)
# return loss.item() # Convert to Python float