whaifree
f95b13b8aa
- 添加 test_shell.py脚本,实现自动测试和日志记录功能 - 新增 deployment.xml 和 iml 文件,配置项目部署和模块信息 - 添加 log_20241008_success.log 和 status.md 文件,记录测试结果和状态 - 更新 test_IVF.py,修改测试模型和输出路径 |
||
---|---|---|
image | ||
logs | ||
utils | ||
.gitignore | ||
dataprocessing.py | ||
net.py | ||
PFCFuse_IVF.pth | ||
README.md | ||
test_IVF.py | ||
test_shell.py | ||
train.py |
PFCFuse: A Poolformer and CNN fusion network for Infrared-Visible Image Fusion
The implementation of our paper "PFCFuse: A Poolformer and CNN fusion network for Infrared-Visible Image Fusion".
Recommended Environment:
python=3.8
torch=1.12.1+cu113
scipy=1.9.3
scikit-image=0.19.2
scikit-learn=1.1.3
tqdm=4.62.0
Network Architecture:
Our PFCFuse is implemented in net.py
.
Training:
Data preprocessing
Run
python dataprocessing.py
Model training
Run
python train.py
Testing:
Run
python test_IVF.py
相关工作
@inproceedings{zhao2023cddfuse,
title={Cddfuse: Correlation-driven dual-branch feature decomposition for multi-modality image fusion},
author={Zhao, Zixiang and Bai, Haowen and Zhang, Jiangshe and Zhang, Yulun and Xu, Shuang and Lin, Zudi and Timofte, Radu and Van Gool, Luc},
booktitle={Proceedings of the IEEE/CVF conference on computer vision and pattern recognition},
pages={5906--5916},
year={2023}
}